留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

雨滴对水-气界面溶解氧与pH扩散影响的平面光极观测方法

姜子可 于新生 靳卫卫

姜子可, 于新生, 靳卫卫. 雨滴对水-气界面溶解氧与pH扩散影响的平面光极观测方法[J]. 海洋学报, 2018, 40(7): 134-142. doi: 10.3969/j.issn.0253-4193.2018.07.011
引用本文: 姜子可, 于新生, 靳卫卫. 雨滴对水-气界面溶解氧与pH扩散影响的平面光极观测方法[J]. 海洋学报, 2018, 40(7): 134-142. doi: 10.3969/j.issn.0253-4193.2018.07.011
Jiang Zike, Yu Xinsheng, Jin Weiwei. Planar optode observation method for the effect of raindrop on dissolved oxygen and pH diffusion of air-water interface[J]. Haiyang Xuebao, 2018, 40(7): 134-142. doi: 10.3969/j.issn.0253-4193.2018.07.011
Citation: Jiang Zike, Yu Xinsheng, Jin Weiwei. Planar optode observation method for the effect of raindrop on dissolved oxygen and pH diffusion of air-water interface[J]. Haiyang Xuebao, 2018, 40(7): 134-142. doi: 10.3969/j.issn.0253-4193.2018.07.011

雨滴对水-气界面溶解氧与pH扩散影响的平面光极观测方法

doi: 10.3969/j.issn.0253-4193.2018.07.011
基金项目: 国家自然科学基金项目(41276089,41176078,51504146,41606086);中海石油环保服务有限公司项目(RL-16-ZC-YF-007)。

Planar optode observation method for the effect of raindrop on dissolved oxygen and pH diffusion of air-water interface

  • 摘要: 水-气界面是一个重要的物质交换过程界面,对生态系统及生物地球化学循环过程有着重要影响。自然界的降雨可以改变水体表面平衡状态,提高气体在界面的通量交换速率,使得水体界面溶解氧和pH的水平、垂直方向浓度分布发生变化。本文利用平面传感膜具有高时空分辨率、可提供两维浓度分布信息的特点,开展了雨滴对水-气微界面层中的氧气扩散和pH值分布变化模拟实验,采用双参数平面光极同步测量获取低溶解气体在水-气界面的两维分布浓度变化。实验结果证明在受风速、温度影响较小区域,降雨过程对调节表层水体的溶解氧含量和pH值变化具有重要作用,雨滴可以打破水-气界面的微表层平衡机制,促进大气中氧气在表层水体的溶解,使得水面垂直方向23 mm内的溶解氧平均升高2.3 mg/L;降雨对水面12 mm之内表层水体pH值产生的影响较为明显,pH值平均降低了0.2~0.4个单位,表明降雨雨滴促进大气在水-气界面的迁移进程,溶解的CO2使得表层水体向酸性方向转化。本文提出的基于平面光极两维观测方法为评估低风速、高降雨或低降雨区域的海岸带溶解氧和pH值的变化提供高空间分辨率的水-气界面实时观测新的技术支撑。
  • Wesslander K, Hall P, Hjalmarsson S, et al. Observed carbon dioxide and oxygen dynamics in a Baltic Sea coastal region[J]. Journal of Marine Systems, 2011, 86(1/2):1-9.
    Lion L W, Leckie J O. The biogeochemistry of the air-sea interface[J]. Annual Review of Earth and Planetary Sciences, 1981, 9(1):449-484.
    Baker A R, Landing W M, Bucciarelli E, et al. Trace element and isotope deposition across the air-sea interface:progress and research needs[J]. Philosophical Transactions of the Royal Society:A, 2016, 374(2081):0190.
    Feely R A, Sabine C L, Hernandez-Ayon J M, et al. Evidence for upwelling of corrosive "acidified" water onto the continental shelf[J]. Science, 2008, 320(5882):1490-1492.
    Booth J A T, McPhee-Shaw E E, Chua P, et al. Natural intrusions of hypoxic, low pH water into nearshore marine environments on the California coast[J]. Continental Shelf Research, 2012, 45(15):108-115.
    Gobler C J, DePasquale E L, Griffith A W, et al. Hypoxia and acidification have additive and synergistic negative effects on the growth, survival, and metamorphosis of early life stage bivalves[J]. PloS one, 2014, 9(1):e83648.
    Pörtner H O, Langenbuch M, Michaelidis B. Synergistic effects of temperature extremes, hypoxia, and increases in CO2 on marine animals:From Earth history to global change[J]. Journal of Geophysical Research:Oceans, 2005, 110(C9):1-15.
    Mackenzie F T, Lerman A, Andersson A J. Past and present of sediment and carbon biogeochemical cycling models[J]. Biogeosciences Discussions, 2004, 1(1):27-85.
    Wanninkhof R. Relationship between wind speed and gas exchange over the ocean[J]. Journal of Geophysical Research:Oceans, 1992, 97(C5):7373-7382.
    Ho D T, Law C S, Smith M J, et al. Measurements of air-sea gas exchange at high wind speeds in the Southern Ocean:Implications for global parameterizations[J]. Geophysical Research Letters, 2006, 33(16):611.
    Saylor J R, Handler R A. Gas transport across an air/water interface populated with capillary waves[J]. Physics of Fluids, 1997, 9(9):2529-2541.
    Boettcher E J, Fineberg J, Lathrop D P. Turbulence and wave breaking effects on air-water gas exchange[J]. Physical Review Letters, 2000, 85(9):2030.
    Lorke A, Peeters F. Toward a unified scaling relation for interfacial fluxes[J]. Journal of Physical Oceanography, 2006, 36(5):955-961.
    Turk D, Zappa C J, Meinen C S, et al. Rain impacts on CO2 exchange in the western equatorial Pacific Ocean[J]. Geophysical Research Letters, 2010, 37(23):610.
    Ho D T, Bliven L F, Wanninkhof R I K, et al. The effect of rain on air-water gas exchange[J]. Tellus B, 1997, 49(2):149-158.
    Harrison E L, Veron F, Ho D T, et al. Nonlinear interaction between rain-and wind-induced air-water gas exchange[J]. Journal of Geophysical Research:Oceans, 2012, 117(C3):034.
    McGillis W R, Edson J B, Zappa C J, et al. Air-sea CO2 exchange in the equatorial Pacific[J]. Journal of Geophysical Research:Oceans, 2004, 109(C8):S02.
    Huttunen J T, Väisänen T S, Heikkinen M, et al. Exchange of CO2, CH4 and N2O between the atmosphere and two northern boreal ponds with catchments dominated by peatlands or forests[J]. Plant and Soil, 2002, 242(1):137-146.
    Ashton I G, Shutler J D, Land P E, et al. A sensitivity analysis of the impact of rain on regional and global sea-air fluxes of CO2[J]. PloS One, 2016, 11(9):e0161105.
    Cunliffe M, Engel A, Frka S, et al. Sea surface microlayers:A unified physicochemical and biological perspective of the air-ocean interface[J]. Progress in Oceanography, 2013, 109(1):104-116.
    Glud R N, Ramsing N B, Gundersen J K, et al. Planar optrodes:a new tool for fine scale measurements of two-dimensional O2 distribution in benthic communities[J]. Marine Ecology Progress Series, 1996,140(1):217-226.
    Sánchez-Barragán I, Costa-Fernández J M, Sanz-Medel A, et al. A ratiometric approach for pH optosensing with a single fluorophore indicator[J]. Analytica Chimica Acta, 2006, 562(2):197-203.
    Amelia M, Lavie-Cambot A, McClenaghan N D, et al. A ratiometric luminescent oxygen sensor based on a chemically functionalized quantum dot[J]. Chemical Communications, 2011, 47(1):325-327.
    Jiang Z, Yu X, Hao Y. Design and fabrication of a ratiometric planar optode for simultaneous imaging of pH and oxygen[J]. Sensors, 2017, 17(6):1316.
    Uyeda H T, Medintz I L, Jaiswal J K, et al. Synthesis of compact multidentate ligands to prepare stable hydrophilic quantum dot fluorophores[J]. Journal of the American Chemical Society, 2005, 127(11):3870-3878.
    Han M, Gao X, Su J Z, et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules[J]. Nature Biotechnology, 2001, 19(7):631-635.
    Amao Y, Miyashita T, Okura I. Optical oxygen sensing based on the luminescence change of metalloporphyrins immobilized in styrene-pentafluorostyrene copolymer film[J]. Analyst, 2000, 125(5):871-875.
    Rudolph-Mohr N, Vontobel P, Oswald S E. A multi-imaging approach to study the root-soil interface[J]. Annals of Botany, 2014, 114(8):1779-1787.
    Oguri K, Kitazato H, Glud R N. Platinum octaetylporphyrin based planar optodes combined with an UV-LED excitation light source:An ideal tool for high-resolution O2 imaging in O2 depleted environments[J]. Marine Chemistry, 2006, 100:95-107.
  • 加载中
计量
  • 文章访问数:  590
  • HTML全文浏览量:  4
  • PDF下载量:  218
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-14
  • 修回日期:  2018-03-13

目录

    /

    返回文章
    返回