留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长江口及其邻近海域悬浮颗粒物浓度和粒径的时空变化特征

高永强 高磊 朱礼鑫 李道季

高永强, 高磊, 朱礼鑫, 李道季. 长江口及其邻近海域悬浮颗粒物浓度和粒径的时空变化特征[J]. 海洋学报, 2018, 40(3): 62-73. doi: 10.3969/j.issn.0253-4193.2018.03.006
引用本文: 高永强, 高磊, 朱礼鑫, 李道季. 长江口及其邻近海域悬浮颗粒物浓度和粒径的时空变化特征[J]. 海洋学报, 2018, 40(3): 62-73. doi: 10.3969/j.issn.0253-4193.2018.03.006
Gao Yongqiang, Gao Lei, Zhu Lixin, Li Daoji. Spatiotemporal variations in concentration and size of suspended particulate matter in the Changjiang (Yangtze River) Estuary and its adjacent sea[J]. Haiyang Xuebao, 2018, 40(3): 62-73. doi: 10.3969/j.issn.0253-4193.2018.03.006
Citation: Gao Yongqiang, Gao Lei, Zhu Lixin, Li Daoji. Spatiotemporal variations in concentration and size of suspended particulate matter in the Changjiang (Yangtze River) Estuary and its adjacent sea[J]. Haiyang Xuebao, 2018, 40(3): 62-73. doi: 10.3969/j.issn.0253-4193.2018.03.006

长江口及其邻近海域悬浮颗粒物浓度和粒径的时空变化特征

doi: 10.3969/j.issn.0253-4193.2018.03.006
基金项目: 国家重点研发计划(2016YFA0600902);国家自然科学基金面上基金(41676066)。

Spatiotemporal variations in concentration and size of suspended particulate matter in the Changjiang (Yangtze River) Estuary and its adjacent sea

  • 摘要: 长江口是典型的高浊度河口,长江口及其邻近海域悬浮颗粒物(suspended particulate matter,SPM)浓度跨度大,泥沙过程活跃、复杂。2015年7月9-20日(洪季)和2016年3月7-19日(枯季),使用OBS和LISST分别测定了该区域99个和89个站位的SPM浊度、光衰减系数、总体积浓度、平均粒径和粒径谱等参数;同时通过现场过滤测定了各站位表、中、底3层的SPM质量浓度以及典型站位SPM中颗粒有机碳(particulate organic carbon,POC)的δ13C、颗粒氮(particulate nitrogen,PN)的δ15N以及POC/PN摩尔比值。结果表明,浊度、光衰减系数、总体积浓度等3个参数均与SPM质量浓度显示出了显著的正相关关系。研究区域SPM平均粒径一般表层大于底层、枯季大于洪季;长江淡水端元输出的SPM粒径枯季也明显大于洪季。具有相似粒径谱特征的SPM可以通过测定δ13C和δ15N值来进一步区分其来源和组成。SPM质量浓度和总体积浓度等参数结合还可以计算SPM有效密度,用以了解研究区域SPM的沉降过程。结果表明两个季节SPM有效密度和粒径之间显示出了显著的负相关关系,说明枯季长江输出的SPM由于粒径大、密度小、沉降速度低,加之强烈的垂直混合和口门拦门沙附近的再悬浮,随着环流可能到达研究区域北部的最东端;而洪季长江输出的SPM由于粒径小、密度大、沉降速度高,在口门附近快速沉降。
  • Dyer K R. Sediment processes in estuaries:Future research requirements[J]. Journal of Geophysical Research:Oceans, 1989, 94(C10):14327-14339.
    Eisma D, Bernard P, Cadée G C, et al. Suspended-matter particle size in some West-European estuaries; part Ⅱ:A review on floc formation and break-up[J]. Netherlands Journal of Sea Research, 1991, 28(3):215-220.
    Fettweis M, Sas M, Monbaliu J. Seasonal, neap-spring and tidal variation of cohesive sediment concentration in the Scheldt Estuary, Belgium[J]. Estuarine, Coastal and Shelf Science, 1998, 47(1):21-36.
    Jago C F, Bull C F J. Quantification of errors in transmissometer-derived concentration of suspended particulate matter in the coastal zone:implications for flux determinations[J]. Marine Geology, 2000, 169(3):273-286.
    Fettweis M, Francken F, Pison V, et al. Suspended particulate matter dynamics and aggregate sizes in a high turbidity area[J]. Marine Geology, 2006, 235(1/4):63-74.
    Jago C F, Jones S E, Sykes P, et al. Temporal variation of suspended particulate matter and turbulence in a high energy, tide-stirred, coastal sea:Relative contributions of resuspension and disaggregation[J]. Continental Shelf Research, 2006, 26(17/18):2019-2028.
    Markussen T N, Andersen T J. A simple method for calculating in situ floc settling velocities based on effective density functions[J]. Marine Geology, 2013, 344(4):10-18.
    Markussen T N, Andersen T J. Flocculation and floc break-up related to tidally induced turbulent shear in a low-turbidity, microtidal estuary[J]. Journal of Sea Research, 2014, 89(3):1-11.
    Papenmeier S, Schrottke K, Bartholomä A. Over time and space changing characteristics of estuarine suspended particles in the German Weser and Elbe estuaries[J]. Journal of Sea Research, 2014, 85(1):104-115.
    Fugate D C, Friedrichs C T. Determining concentration and fall velocity of estuarine particle populations using ADV, OBS and LISST[J]. Continental Shelf Research, 2002, 22(11/13):1867-1886.
    Voulgaris G, Meyers S T. Temporal variability of hydrodynamics, sediment concentration and sediment settling velocity in a tidal creek[J]. Continental Shelf Research, 2004, 24(15):1659-1683.
    Li Y, Chen Y N, Ruan M N, et al. The Jiulong River plume as cross-strait exporter and along-strait barrier for suspended sediment:Evidence from the endmember analysis of in-situ, particle size[J]. Estuarine, Coastal and Shelf Science, 2015, 166(5):146-152.
    Lee J, Liu J T, Hung C C, et al. River plume induced variability of suspended particle characteristics[J]. Marine Geology, 2016, 380:219-230.
    Many G, Bourrin F, Madron X D D, et al. Particle assemblage characterization in the Rhone River ROFI[J]. Journal of Marine Systems, 2016, 157:39-51.
    Agrawal Y C, Pottsmith H C. Laser diffraction particle sizing in STRESS[J]. Continental Shelf Research, 1994, 14(10/11):1101-1121.
    Traykovski P, Latter R J, Irish J D. A laboratory evaluation of the laser in situ scattering and transmissometery instrument using natural sediments[J]. Marine Geology, 1999, 159(1/4):355-367.
    Agrawal Y C, Pottsmith H C. Instruments for particle size and settling velocity observations in sediment transport[J]. Marine Geology, 2000, 168(1/4):89-114.
    Chang T S, Joerdel O, Flemming B W, et al. The role of particle aggregation/disaggregation in muddy sediment dynamics and seasonal sediment turnover in a back-barrier tidal basin, East Frisian Wadden Sea, southern North Sea[J]. Marine Geology, 2006, 235(1/4):49-61.
    Maggi F. Biological flocculation of suspended particles in nutrient-rich aqueous ecosystems[J]. Journal of Hydrology, 2009, 376(1/2):116-125.
    Xia X M, Li Y, Yang H, et al. Observations on the size and settling velocity distributions of suspended sediment in the Pearl River Estuary, China[J]. Continental Shelf Research, 2004, 24(16):1809-1826.
    Pedocchi F, García M H. Evaluation of the LISST-ST instrument for suspended particle size distribution and settling velocity measurements[J]. Continental Shelf Research, 2006, 26(8):943-958.
    Fettweis M. Uncertainty of excess density and settling velocity of mud flocs derived from in situ measurements[J]. Estuarine, Coastal and Shelf Science, 2008, 78(2):426-436.
    Yuan Y, Wei H, Zhao L, et al. Observations of sediment resuspension and settling off the mouth of Jiaozhou Bay, Yellow Sea[J]. Continental Shelf Research, 2008, 28(19):2630-2643.
    Li Y H, Li D Y, Fang J Y, et al. Impact of Typhoon Morakot on suspended matter size distributions on the East China Sea inner shelf[J]. Continental Shelf Research, 2015(101):47-58.
    Liu S D, Qiao L L, Li G X, et al. Distribution and cross-front transport of suspended particulate matter over the inner shelf of the East China sea[J]. Continental Shelf Research, 2015(107):92-102.
    Guo C, He Q, Guo L C, et al. A study of in-situ sediment flocculation in the turbidity maxima of the Yangtze Estuary[J]. Estuarine, Coastal and Shelf Science, 2017(191):1-9.
    Gartner J W, Cheng R T, Wang P F, et al. Laboratory and field evaluations of the LISST-100 instrument for suspended particle size determinations[J]. Marine Geology, 2001, 175(1):199-219.
    Gray J R, Agrawal Y C, Pottsmith H C. The LISST-SL streamlined isokinetic suspended-sediment profiler[C]//International Symposium on River Sedimentation, 2004.
    Williams N D, Walling D E, Leeks G J L. High temporal resolution in situ measurement of the effective particle size characteristics of fluvial suspended sediment[J]. Water Research, 2007, 41(5):1081-1093.
    Gao L, Li D J, Ishizaka J. Stable isotope ratios of carbon and nitrogen in suspended organic matter:Seasonal and spatial dynamics along the Changjiang (Yangtze River) transport pathway[J]. Journal of Geophysical Research:Biogeosciences, 2014, 119(8):1717-1737.
    Sutherland T F, Lane P M, Amos C L, et al. The calibration of optical backscatter sensors for suspended sediment of varying darkness levels[J]. Marine Geology, 2000, 162(2/4):587-597.
    Downing J. Twenty-five years with OBS sensors:The good, the bad, and the ugly[J]. Continental Shelf Research, 2006, 26(17/18):2299-2318.
    Baker E T, Lavelle J W. The effect of particle size on the light attenuation coefficient of natural suspensions[J]. Journal of Geophysical Research:Oceans, 1984, 89(C5):8197-8203.
    Mikkelsen O A, Pejrup M. In situ particle size spectra and density of particle aggregates in a dredging plume[J]. Marine Geology, 2000, 170(3/4):443-459.
    沈焕庭, 潘定安. 长江河口最大浑浊带[M]. 北京:海洋出版社, 2001. Shen Huanting, Pan Ding'an. Turbidity Maximum in the Changjiang Estuary[M]. Beijing:China Ocean Press, 2001.
    Waldron S, Tatner P, Jack I, et al. The impact of sewage discharge in a marine embayment:a stable isotope reconnaissance[J]. Estuarine, Coastal and Shelf Science, 2001, 52(1):111-115.
    于海燕, 俞志明, 宋秀贤, 等.长江口海域悬浮颗粒有机物的稳定氮同位素季节分布与关键生物地球化学过程[J]. 海洋学报,2014, 36(2):16-22. Yu Haiyan, Yu Zhiming, Song Xiuxian, et al. Seasonal distribution of the isotopic composition of suspended particulate nitrogen in the Changjiang River estuary and its biogeochemistry implications[J]. Haiyang Xuebao, 2014, 36(2):16-22.
    Johnson B D, Cooke R C. Bubble populations and spectra in coastal waters:A photographic approach[J]. Journal of Geophysical Research, 1979, 84(C7):3761-3766.
    Wu J. Bubble populations and spectra in near-surface ocean:summary and review of field measurements[J]. Journal of Geophysical Research:Atmospheres, 1981, 86(C1):457-463.
    Wu J. Bubbles in the near-surface ocean:A general Description[J]. Journal of Geophysical Research:Oceans, 1988, 93(C1):587-590.
    Hsu R T, Liu J T. In-situ, estimations of the density and porosity of flocs of varying sizes in a submarine canyon[J]. Marine Geology, 2010, 276(1/4):105-109.
  • 加载中
计量
  • 文章访问数:  1775
  • HTML全文浏览量:  26
  • PDF下载量:  693
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-20

目录

    /

    返回文章
    返回