The dynamic characteristics of turbulence in the Modaomen Estuary river plume based on the ADCP data
-
摘要: 利用1 200 kHz的宽频RDI ADCP于2015年7月在磨刀门河口拦门沙前缘的浅水站和沿岸流影响的深水站进行座底观测,采样频率为1 Hz,数据经滤波去噪处理,应用方差方法分析了磨刀门的羽状流湍流动力特征。结果表明,磨刀门河口水流表现出3层流结构,峰值流速出现在表层的羽状流层,深水区雷诺应力量级为10-3~10-5 m2/s2,小于拦门沙前缘的湍流脉动强度;拦门沙前缘和深水区湍流动能密度参数的范围均在0.01~0.6 m2/s2左右,羽状流的湍动能比底边界层高一个数量级。拦门沙前缘羽状流的湍动能生成率量级约为10-3 W/kg,比底层大2~3个量级,且远强于深水区;垂直涡黏系数的大小约为0~0.15 m2/s。总的来说,羽状流表现出层化稳定、混合强烈,以及高的湍动能生成率,为羽状流携带高浊度悬沙离岸远距离搬运提供了湍流动力条件。Abstract: This thesis aimed to analyze the dynamic characteristics of turbulence with the field observation data getting by a 1 200 kHz, broadband RDI ADCP rigidly mounted in the front of the sand bar and in the deep-water zone in the Modaomen Estuary in July 2015, with the "variance method". The results show that the flow velocity presenta typical three-layer circulation structure, and high-speed velocity area appeared in the Modaomen Estuary river plume. The Reynolds stress estimated in the deep-water zone was between 10-3-10-5 m2/s2, and smaller than that in the front of sand bar. The turbulence kinetic energy density parameter was larger in the river plume than in the bottom, and the size of it in both place was between 0.01-0.6 m2/s2. In the front of the sand bar, the turbulence kinetic energy production rate was in the order of 10-3 W/kg in the river plume, 2-3 orders of magnitude lager than that in the bottom and stronger than that in the deep-water zone. The vertical eddy viscosity coefficient was between 0-0.15 m2/s. In general, the river plume presents a state of stably stratified, with strongly mixed and high turbulence kinetic energy production rate, which provides a dynamical condition for the long-distance transport of high turbidity suspended sediment.
-
Key words:
- Modaomen Estuary /
- ADCP /
- variance method /
- turbulence parameter
-
Lohrmann A, Hackett B, Røed L P. High resolution measurements of turbulence, velocity and stress using a pulse-to-pulse coherent sonar[J]. Journal of Atmospheric and Oceanic Technology, 1990, 7(1):19-37. Lu Y, Lueck R G. Using a broadband ADCP in a tidal channel. Part Ⅱ:Turbulence[J]. Journal of Atmospheric and Oceanic Technology, 1999, 16:1568-1579. Stacey M T, Monismith S G, Burau J R. Measurements of Reynolds stress profiles in unstratified tidal flow[J]. Journal of Geophysical Research, 1999, 104(C5):10933-10949. Williams E, Simpson J H. Uncertainties in estimate of Renolds stress and TKE production rate using the ADCP variance method[J]. Journal of Atmospheric and Oceanic Technology, 2004, 21(2):347-357. Rippeth T P, Simpson J H, Williams E, et al. Measurement of the rates of production and dissipation of turbulent kinetic energy in an energetic tidal flow:Red Wharf Bay revisited[J]. Journal of Physical Oceanography, 2003, 33(9):1889-1901. 黎为. 基于ADCP高频观测资料的磨刀门湍流动力特征[D]. 广州:中山大学, 2016. Li Wei. The dynamic characteristics of turbulence in the Modaomen Estuary based on the ADCP data[D]. Guangzhou:Sun Yat-sen University, 2016. 刘欢, 吴超羽, 许炜铭, 等. 珠江河口底边界层湍流特征量研究[J]. 海洋工程, 2009, 27(1):62-76. Liu Huan, Wu Chaoyu, Xu Weiming, et al. Research on turbulent features of the bottom boundary layer in the Pearl River[J]. The Ocean Engineering, 2009, 27(1):62-76. 王建丰. 河口羽扩展研究以及潮平均混合参数化[D]. 青岛:中国海洋大学, 2013. Wang Jianfeng. The impact of river discharge, tidal range, wind on river plume spreading and tidal average mixing parameterization[D]. Qingdao:Ocean University of China, 2013. Grant W D, Madsen O S. The continental-shelf bottom boundary layer[J]. Annual Review of Fluid Mechanics, 1986, 18(1):265-305. 吕华庆. 物理海洋学基础[M]. 北京:海洋出版社, 2012:69-70. Lü Huaqing. The Basic of Physical Oceanography[M]. Beijing:China Ocean Press, 2012:69-70. -
计量
- 文章访问数: 1086
- HTML全文浏览量: 10
- PDF下载量: 685
- 被引次数: 0