留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

健康与白化状态下珊瑚共生菌的群落组成与功能差异

林姿君 蔡中华 林光辉 周进

林姿君, 蔡中华, 林光辉, 周进. 健康与白化状态下珊瑚共生菌的群落组成与功能差异[J]. 海洋学报, 2018, 40(2): 104-116. doi: 10.3969/j.issn.0253-4193.2018.02.011
引用本文: 林姿君, 蔡中华, 林光辉, 周进. 健康与白化状态下珊瑚共生菌的群落组成与功能差异[J]. 海洋学报, 2018, 40(2): 104-116. doi: 10.3969/j.issn.0253-4193.2018.02.011
Lin Zijun, Cai Zhonghua, Lin Guanghui, Zhou Jin. Community composition and functional differences of symbiotic bacteria in healthy and blenching coral[J]. Haiyang Xuebao, 2018, 40(2): 104-116. doi: 10.3969/j.issn.0253-4193.2018.02.011
Citation: Lin Zijun, Cai Zhonghua, Lin Guanghui, Zhou Jin. Community composition and functional differences of symbiotic bacteria in healthy and blenching coral[J]. Haiyang Xuebao, 2018, 40(2): 104-116. doi: 10.3969/j.issn.0253-4193.2018.02.011

健康与白化状态下珊瑚共生菌的群落组成与功能差异

doi: 10.3969/j.issn.0253-4193.2018.02.011
基金项目: 广东省自然科学基金(2014A030313774);广东省海洋与渔业厅科技攻关与研发项目(A201603D05);深圳市科技创新委计划(JCYJ20150529164918736,JCYJ20150831192329178);国家海洋局南海分局局长基金(20161615)。

Community composition and functional differences of symbiotic bacteria in healthy and blenching coral

  • 摘要: 为探究珊瑚共生菌对白化的响应,采用OTU分析和Biolog技术对比了鹿角杯形珊瑚(Pocillopora damicornis)健康个体与白化个体细菌群落在结构和功能上的差异。结果显示:物种组成(属水平)上两者的优势成分相似,均由聚球菌Synechococcus占主导(大于50%);其余组分中,红球菌Pelagibacter、谱尼螺杆菌Puniceispirillum、珊瑚微球菌Coraliomargarita和光合细菌Photobacterium在健康个体中居多;而厚壁菌Actinomarina、梨形浮霉菌Blastopirellula以及一些病原菌(如弧菌Vibrio、单胞菌PseudospirillumAlteromonas和考克斯氏体Coxiella)在白化个体中占优。生物多样性显示白化组的α-多样性(Chao Ⅰ,Shannon index)显著低于健康组(P<0.05)。Personal分析表明温度和营养盐(硝酸盐、磷酸盐)是影响物种组成最相关的环境因子。功能分析显示:在碳源的利用上,健康组对碳源的利用从大到小的顺序为羧酸类、氨基酸类、双亲化合物、糖类、多聚物、胺类;而白化组对碳源的利用偏向糖类、氨基酸和胺类。羧酸和糖类的利用率导致了白化组与健康组对碳源摄取能力的差异。氮源的利用上两者均以无机氮为主,但白化组显示出部分消耗有机氮(肽)的能力。磷源的代谢上两者均优先利用无机磷,而白化组弱化了对有机磷的代谢能力。本次研究的结果表明白化降低了珊瑚共生菌的生物多样性,并引起了菌群对C、N、P的代谢差异,致使共生微生物呈现结构和功能上的变化。
  • Baker A C, Starger C J, McClanahan T R, et al. Corals' adaptive response to climate change:Shifting to new algal symbionts may safeguard devastated reefs from extinction[J]. Nature, 2004, 430(7001):741.
    Rosenberg E, Koren O, Reshef L, et al. The role of microorganisms in coral health, disease and evolution[J]. Nature Reviews Microbiology, 2007, 5(5):355-362.
    Wilkinson C. Status of coral reefs of the world:2008 global coral reef monitoring network and reef and rainforest research Centre[J]. Coral Reefs, 2008, 3:296.
    Riegl B, Bruckner A, Coles S L, et al. Coral reefs[J]. Annals of the New York Academy of Sciences, 2009, 1162(1):136-186.
    West J M, Salm R V. Resistance and resilience to coral bleaching:implications for coral reef conservation and management[J]. Conservation Biology, 2003, 17(4):956-967.
    West J M, Courtney C A, Hamilton A T, et al. Climate-smart design for ecosystem management:a test application for coral reefs[J]. Environmental Management, 2017, 59(1):102-117.
    Yentsch C S, Yentsch C M, Cullen J J, et al. Sunlight and water transparency:cornerstones in coral research[J]. Journal of Experimental Marine Biology and Ecology, 2002, 268(2):171-183.
    Zhu B H, Wang G C, Huang B, et al. Effects of temperature, hypoxia, ammonia and nitrate on the bleaching among three coral species[J]. Chinese Science Bulletin, 2004, 49(18):1923-1928.
    Garren M, Azam F. New directions in coral reef microbial ecology[J]. Environmental Microbiology, 2012, 14(4):833-844.
    Thompson J R, Rivera H E, Closek C J, et al. Microbes in the coral holobiont:partners through evolution, development, and ecological interactions[J]. Frontiers in Cellular and Infection Microbiology, 2014, 4:176.
    Barott K L, Venn A A, Perez S O, et al. Coral host cells acidify symbiotic algal microenvironment to promote photosynthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(2):607-612.
    刘助红. 西沙鹿角珊瑚共附生细菌多样性及其与珊瑚白化关系的研究[D]. 广州:中国科学院南海海洋研究所, 2012. Liu Zhuhong. Studying of the bacterial composition associated with Acropora solitaryensis and the relation to the coral bleaching[D]. Guangzhou:South China Sea Institute of Oceanography, Chinese Academy of Sciences, 2012.
    Rogers C S, Miller J. Coral diseases cause reef decline[J]. Science, 2013, 340(6140):1522.
    Guest J R, Low J, Tun K, et al. Coral community response to bleaching on a highly disturbed reef[J]. Scientific Reports, 2016, 6:20717.
    Bourne D G, Morrow K M, Webster N S. Insights into the coral microbiome:underpinning the health and resilience of reef ecosystems[J]. Annual Review of Microbiology, 2016, 70(1):317-340.
    Olson N D, Ainsworth T D, Gates R D, et al. Diazotrophic bacteria associated with Hawaiian Montipora corals:diversity and abundance in correlation with symbiotic dinoflagellates[J]. Journal of Experimental Marine Biology and Ecology, 2009, 371(2):140-146.
    Hong M J, Yu Y T, Chen C A, et al. Influence of species specificity and other factors on bacteria associated with the coral Stylophora pistillata in Taiwan[J]. Applied and Environmental Microbiology, 2009, 75(24):7797-7806.
    王文涛. 中国东海、黄海和渤海微表层营养盐分布及富集研究[D]. 青岛:中国海洋大学, 2013:16-19. Wang Wentao. Study on the distribution and enrichment of nutrients in the sea-surface microlayer of the East China Sea, the Yellow Sea and the Bohai Sea[D]. Qingdao:Ocean University of China, 2013:16-19.
    Clasen J L, Elser J J. The effect of host Chlorella NC64A, carbon:phosphorus ratio on the production of Paramecium bursaria Chlorella Virus-1[J]. Freshwater Biology, 2010, 52(1):112-122.
    高晓奇, 肖能文, 叶瑶, 等. 基于Biolog-ECO分析长庆油田土壤微生物群落功能多样性特征[J]. 应用与环境生物学报, 2014, 20(5):913-918. Gao Xiaoqi, Xiao Nengwen, Ye Yao, et al. Analysis of microbial community functional diversity in the Changqing Oilfield based on Biology-ECO method[J]. Chinese Journal of Applied and Environmental Biology, 2014, 20(5):913-918.
    Peixoto R S, Rosado P M, De Assis Leite D C, et al. Beneficial microorganisms for corals (BMC):proposed mechanisms for coral health and resilience[J]. Frontiers in Microbiology, 2017, 8:341.
    周进, 晋慧, 蔡中华. 微生物在珊瑚礁生态系统中的作用与功能[J]. 应用生态学报, 2014, 25(3):919-930. Zhou Jin, Jin Hui, Cai Zhonghua. A review of the role and function of microbes in coral reef ecosystem[J]. Chinese Journal of Applied Ecology, 2014, 25(3):919-930.
    Du J K, Xiao K, Huang Y L, et al. Seasonal and spatial diversity of microbial communities in marine sediments of the South China Sea[J]. Antonie Van Leeuwenhoek, 2011, 100(3):317-331.
    Sun F L, Wang Y S, Wu M L, et al. Spatial and vertical distribution of bacteria in the Pearl River estuary sediment[J]. African Journal of Biotechnology, 2012, 11(9):2256-2266.
    Alexandre A, Laranjo M, Young J P, et al. dnaJ is a useful phylogenetic marker for alpha-proteobacteria[J]. International Journal of Systematic & Evolutionary Microbiology, 2008, 58(12):2839-2849.
    Brettar I, Christen R, Höfle M G. Rheinheimera perlucida sp. nov. a marine bacterium of the Gamma-proteobacteria isolated from surface water of the central Baltic Sea[J]. International Journal of Systematic and Evolutionary Microbiology, 2006, 56(9):2177-2183.
    Röthig T, Yum L K, Kremb S G, et al. Microbial community composition of deep-sea corals from the Red Sea provides insight into functional adaption to a unique environment[J]. Scientific Reports, 2017, 7:44714.
    McCallum H, Harvell D, Dobson A. Rates of spread of marine pathogens[J]. Ecology Letters, 2003, 6(12):1062-1067.
    Luo Haiwei, Moran M A. How do divergent ecological strategiearacteristics of the deep-sea microorganisms in tropical Pacific Ocean[J]. Haiyang Xuebao, 2006, 28(5):130-137.vskaya N I, Ivanova E P, Alexeeva Y V, et al. Low-molecular-weight, biologically active compounds from marine Pseudo alteromonas species[J]. Current Microbiology, 2004, 48(6):441-446.
    Hutchins D A, Fu F X. Microorganisms and ocean global change[J]. Nature microbiology, 2017, 2(6):17058.
    Eakin C M, Morgan J A, Heron S F, et al. Caribbean corals in crisis:record thermal stress, bleaching, and mortality in 2005[J]. PLoS One, 2010, 5(11):e13969.
    Rowan R. Coral bleaching:thermal adaptation in reef coral symbionts[J]. Nature, 2004, 430(7001):742.
    Selig E R, Drew Harvell C, Bruno J F, et al. Analyzing the relationship between ocean temperature anomalies and coral disease outbreaks at broad spatial scales[M]//Phinney J T, Hoegh-Guldberg O, Kleypas J, et al, eds. Coral Reefs and Climate Change:Science and Management. Washington:American Geophysical Union, 2006:111-128.
    Lema K A, Willis B L, Bourne D G. Corals form characteristic associations with symbiotic nitrogen-fixing bacteria[J]. Applied and Environmental Microbiology, 2012, 78(9):3136-3144.
    Zhou J, Cai M, Jiang T, et al. Mixed carbon source control strategy for enhancing alginate lyase production by marine Vibrio sp. QY102[J]. Bioprocess and Biosystems Engineering, 2014, 37(3):575-584.
    Mills H J, Martinez R J, Story S, et al. Characterization of microbial community structure in Gulf of Mexico gas hydrates:comparative analysis of DNA-and RNA-derived clone libraries[J]. Applied and Environmental Microbiology, 2005, 71(6):3235-3247.
    Torréton J P, Rochelle-Newall E, Pringault O, et al. Variability of primary and bacterial production in a coral reef lagoon (New Caledonia)[J]. Marine Pollution Bulletin, 2010, 61(7/12):335-348.
    Wegley L, Edwards R, Rodriguez-Brito B, et al. Metagenomic analysis of the microbial community associated with the coral Porites astreoides[J]. Environmental Microbiology, 2007, 9(11):2707-2719.
    Rädecker N, Pogoreutz C, Voolstra C R, et al. Nitrogen cycling in corals:the key to understanding holobiontfunctioning?[J]. Trends in Microbiology, 2015, 23(8):490-497.
    Lesser M P. Experimental biology of coral reef ecosystems[J]. Journal of Experimental Marine Biology and Ecology, 2004, 300(1/2):217-252.
    Jin X C, Wang S R, Pang Y, et al. The adsorption of phosphate on different trophic lake sediments[J]. Colloids & Surfaces A:Physicochemical and Engineering Aspects, 2005, 254(1/3):241-248.
    Uzair B, Ahmed N. Solubilization of insoluble inorganic phosphate compounds by attached and free living marine bacteria[J]. Journal of Basic & Applied Science, 2007, 3(2):59-63.
    Thurber R L V, Barott K L, Hall D, et al. Metagenomic analysis indicates that stressors induce production of herpes-like viruses in the coral Porites compressa[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(47):18413-18418.
    Littman R, Willis B L, Bourne D G. Metagenomic analysis of the coral holobiont during a natural bleaching event on the Great Barrier Reef[J]. Environmental Microbiology Reports, 2011, 3(6):651-660.
    Wohl D L, Arora S, Gladstone J R. Functional redundancy supports biodiversity and ecosystem function in a closed and constant environment[J]. Ecology, 2004, 85(6):1534-1540.
    Polónia A R M, Cleary D F R, Freitas R, et al. Archaeal and bacterial communities of Xestospongia testudinaria, and sediment differ in diversity, composition and predicted function in an Indonesian coral reef environment[J]. Journal of Sea Research, 2017, 119(4):37-53.
    Berga M, Székely A J, Langenheder S. Effects of disturbance intensity and frequency on bacterial community composition and function[J]. PLoS One, 2012, 7(5):e36959.
    骆祝华, 裴耀文, 黄翔玲, 等. 热带太平洋深海微生物的若干生理生态特征[J]. 海洋学报, 2006, 28(5):130-137. Luo Zhuhua, Pei Yaowen, Huang Xiangling, et al. Physiological and ecological ch
  • 加载中
计量
  • 文章访问数:  1013
  • HTML全文浏览量:  17
  • PDF下载量:  448
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-15

目录

    /

    返回文章
    返回