留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于温度链浮标获取南极普里兹湾积雪和固定冰厚度的研究

赵杰臣 杨清华 程斌 汪宁 惠凤鸣 沈辉 韩晓鹏 张林 TimoVihma

赵杰臣, 杨清华, 程斌, 汪宁, 惠凤鸣, 沈辉, 韩晓鹏, 张林, TimoVihma. 基于温度链浮标获取南极普里兹湾积雪和固定冰厚度的研究[J]. 海洋学报, 2017, 39(11): 115-127. doi: 10.3969/j.issn.0253-4193.2017.11.011
引用本文: 赵杰臣, 杨清华, 程斌, 汪宁, 惠凤鸣, 沈辉, 韩晓鹏, 张林, TimoVihma. 基于温度链浮标获取南极普里兹湾积雪和固定冰厚度的研究[J]. 海洋学报, 2017, 39(11): 115-127. doi: 10.3969/j.issn.0253-4193.2017.11.011
Zhao Jiechen, Yang Qinghua, Cheng Bin, Wang Ning, Hui Fengming, Shen Hui, Han Xiaopeng, Zhang Lin, Timo Vihma. Snow and land-fast sea ice thickness derived from thermistor chain buoy in the Prydz Bay, Antarctic[J]. Haiyang Xuebao, 2017, 39(11): 115-127. doi: 10.3969/j.issn.0253-4193.2017.11.011
Citation: Zhao Jiechen, Yang Qinghua, Cheng Bin, Wang Ning, Hui Fengming, Shen Hui, Han Xiaopeng, Zhang Lin, Timo Vihma. Snow and land-fast sea ice thickness derived from thermistor chain buoy in the Prydz Bay, Antarctic[J]. Haiyang Xuebao, 2017, 39(11): 115-127. doi: 10.3969/j.issn.0253-4193.2017.11.011

基于温度链浮标获取南极普里兹湾积雪和固定冰厚度的研究

doi: 10.3969/j.issn.0253-4193.2017.11.011
基金项目: 国家自然科学基金(41406218,41428603,41376005);国家外专局出国培训项目(2016-51688);南北极环境综合考察与评估专项(CHINARE-01-01)。

Snow and land-fast sea ice thickness derived from thermistor chain buoy in the Prydz Bay, Antarctic

  • 摘要: 极地积雪和海冰厚度是气候变化的重要指标,也是船舶在冰区航行需要掌握的主要参数。2014和2015年在南极普里兹湾中山站附近布放了一种新式的温度链浮标,该浮标每天进行4次常规温度观测和1次加热升温观测,用于实时获取积雪和海冰剖面温度及厚度数据的研究。通过分析剖面温度曲线和升温曲线反映出的大气、积雪、海冰和海水4种介质的热传导特性差异,可利用人工识别的方法(人工经验法)获得大气/积雪、积雪/海冰和海冰/海水界面的位置。根据统计不同介质在升温响应和垂直温度梯度等方面的特性,找到合理阈值,可通过编写程序自动判断各界面的位置(自动程序法)。本文利用这两种方法来判断不同物质界面位置从而计算得到积雪和海冰厚度。与现场人工观测的海冰厚度相比,人工经验法的平均偏差和均方根偏差分别为2.1 cm和6.4 cm(2014年)以及4.3 cm和6.5 cm(2015年),自动程序法的平均偏差和均方根偏差分别为-6.8 cm和6.4 cm(2014年)以及4.5 cm和 6.6 cm(2015年);对于积雪,人工经验法与现场人工观测的平均偏差和均方根偏差分别为0.5 cm和 8.5 cm,而自动程序法的平均偏差和均方根偏差分别为4.7 cm和10.8 cm。自动程序法误差较人工经验法偏大,但考虑到整体冰厚和现场观测的误差,两种方法的结果均是可信的,精度是可以接受的。利用新式的温度链浮标实时获取南极普里兹湾积雪和海冰厚度是可行的。
  • Perovich D K, Richtermenge J A, Light B, et al. Thin and thinner: Sea ice mass balance measurements during SHEBA[J]. Journal of Geophysical Research, 2003, 108: C38050.
    Giles K, Laxon S W, Ridout A L. Circumpolar thinning of Arctic sea ice following the 2007 record ice extent minimum[J]. Geophysical Research Letters, 2008, 35(22): L22502.
    Parkinson C L, Cavalieri D J. Antarctic sea ice variability and trends, 1979-2010[J]. The Cryosphere, 2012, 6(4): 871-880.
    Spreen G, Kaleschke L. Sea ice remote sensing using AMSR-E 89-GHz channels[J]. Journal of Geophysical Research, 2008, 113(C2): C02S03.
    Laxon S W, Giles K, Ridout A L, et al. CryoSat-2 estimates of Arctic sea ice thickness and volume[J]. Geophysical Research Letters, 2013, 40(4): 732-737.
    Kurtz N T, Markus T. Satellite observations of Antarctic sea ice thickness and volume[J]. Journal of Geophysical Research, 2012, 117(C8): C08025.
    Holland P R, Bruneau N, Enright C, et al. Modeled trends in Antarctic sea ice thickness[J]. Journal of Climate, 2014, 27(10):3784-3801.
    杨清华, 刘骥平, 张林, 等. 南极沿岸固定冰观测与研究述评[J]. 水科学进展, 2013, 24(5): 741-749. Yang Qinghua, Liu Jiping, Zhang Lin, et al. Review of Antarctic landfast sea ice observations[J]. Advances in Water Science, 2013, 24(5): 741-749.
    Cheng B, Vihma T, Rontu L, et al. Evolution of snow and ice temperature, thickness and energy balance in Lake Orajärvi, northern Finland[J]. Tellus A, 2014, 66(1): 21564.
    Cheng B, Vihma T, Zhao J C. Analyses snow and ice thickness from high resolution thermistor temperature profiles[C]//Proceedings of the 1st Pan-Eurasian Experiment (PEEX) Conference, 2015.
    Lei R, Li Z, Zhang Z, et al. Annual cycle of landfast sea ice in Prydz Bay, east Antarctica[J]. Journal of Geophysical Research, 2010, 115: C02006.
    Jackson K, Wilkinson J P, Maksym T, et al. A novel and low-cost sea ice mass balance buoy[J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(11): 2676-2688.
    杨清华, 张林, 李春花, 等. 南极中山站气象要素变化特征分析[J]. 海洋通报, 2010, 29(6): 601-607. Yang Qinghua, Zhang Lin, Li Chunhua, et al. Analysis on the variation tendencies of meteorological elements at Zhongshan Station, Antarctica[J]. Marine Science Bulletin, 2010, 29(6): 601-607.
    Hoppmann M, Nicolaus M, Hunkeler P, et al. Seasonal evolution of an ice-shelf influenced fast-ice regime, derived from an autonomous thermistor chain[J]. Journal of Geophysical Research: Oceans, 2015, 120(3): 1703-1724.
    Tian Z, Cheng B, Zhao J C, et al. Observed and modeled snow and ice thickness in the Arctic Ocean with CHINARE buoy data[J]. Acta Oceanologica Sinica, 2017, 36(7):1-10.
  • 加载中
计量
  • 文章访问数:  1278
  • HTML全文浏览量:  43
  • PDF下载量:  511
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-26
  • 修回日期:  2017-06-27

目录

    /

    返回文章
    返回