留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

南海北部相干内潮和非相干内潮演变特征

翟荣伟 陈桂英 尚晓东

翟荣伟, 陈桂英, 尚晓东. 南海北部相干内潮和非相干内潮演变特征[J]. 海洋学报, 2017, 39(11): 24-36. doi: 10.3969/j.issn.0253-4193.2017.11.003
引用本文: 翟荣伟, 陈桂英, 尚晓东. 南海北部相干内潮和非相干内潮演变特征[J]. 海洋学报, 2017, 39(11): 24-36. doi: 10.3969/j.issn.0253-4193.2017.11.003
Zhai Rongwei, Chen Guiying, Shang Xiaodong. Evolution characteristics of coherent and incoherent internal tides in the northern South China Sea[J]. Haiyang Xuebao, 2017, 39(11): 24-36. doi: 10.3969/j.issn.0253-4193.2017.11.003
Citation: Zhai Rongwei, Chen Guiying, Shang Xiaodong. Evolution characteristics of coherent and incoherent internal tides in the northern South China Sea[J]. Haiyang Xuebao, 2017, 39(11): 24-36. doi: 10.3969/j.issn.0253-4193.2017.11.003

南海北部相干内潮和非相干内潮演变特征

doi: 10.3969/j.issn.0253-4193.2017.11.003
基金项目: 国家自然科学基金(41630970,41676022,41376022,41521005)。

Evolution characteristics of coherent and incoherent internal tides in the northern South China Sea

  • 摘要: 通过南海北部跨越陆坡和陆架区的3套潜标数据,对全日和半日相干、非相干内潮的动能变化特征进行了研究。研究表明,全日内潮沿陆坡区向陆架区传播的过程中,在陆坡区主要以全日相干内潮生成为主,平均动能生成率为2.32 J/(m3·s);在陆架区以全日相干内潮耗散为主,平均动能耗散率为0.44 J/(m3·s)。全日非相干内潮动能在陆坡和陆架区均增长,平均动能生成率分别为0.39 J/(m3·s)和0.03 J/(m3·s)。全日与半日相干内潮动能在陆坡和陆架区的表现不同,陆坡区的全日相干内潮动能明显大于陆架区的全日相干内潮动能,而半日相干内潮动能在陆坡和陆架区没有明显差别;陆架区的全日和半日非相干内潮动能要大于陆坡区的全日和半日非相干内潮动能。
  • Ray R D, Mitchum G T. Surface manifestation of internal tides in the deep ocean: observations from altimetry and island gauges[J]. Progress in Oceanography, 1997, 40(1-4):135-162.
    郭朴, 方文东, 于红兵. 近海陆架区内潮观测研究进展[J]. 地球科学进展, 2006, 21(6):617-624. Guo Pu, Fang Wendong, Yu Hongbing. Progress in the observational studies of internal tide over continental shelf[J]. Advances in Earth Science, 2006, 21(6):617-624.
    Llewellyn S S G, Young W R. Conversion of the Barotropic Tide[J]. Journal of Physical Oceanography, 2002, 32(5):1554-1566.
    Duda T F, Lynch J F, Irish J D, et al. Internal tide and nonlinear internal wave behavior at the continental slope in the northern south China Sea[J]. IEEE Journal of Oceanic Engineering, 2004, 29(4):1105-1130.
    Niwa Y, Hibiya T. Three-dimensional numerical simulation of M2 internal tides in the East China Sea[J]. Journal of Geophysical Research, 2004, 109(C4):4027.
    Jan S, Chern C S, Wang J, et al. Generation of diurnal K1 internal tide in the Luzon Strait and its influence on surface tide in the South China Sea[J]. Journal of Geophysical Research, 2007, 112(C6):137-154.
    Alford M H. Observations of parametric subharmonic instability of the diurnal internal tide in the South China Sea[J]. Geophysical Research Letters, 2008, 35(15):596-598.
    Lien R C, Tang T Y, Chang M H, et al. Energy of nonlinear internal waves in the South China Sea[J]. Geophysical Research Letters, 2005, 32(5):215-236.
    Zhao Z, Klemas V, Zheng Q, et al. Remote sensing evidence for baroclinic tide origin of internal solitary waves in the northeastern South China Sea[J]. Geophysical Research Letters, 2004, 31(6):177-182.
    Fang Yong, Hou Yijun, Jing Zhiyong. Seasonal characteristics of internal tides and their responses to background currents in the Luzon Strait[J]. Acta Oceanologica Sinica, 2015, 34(11): 46-54.
    Xu Zhenhua, Yin Baoshu, Hou Yijun, et al. Variability of internal tides and near-inertial waves on the continental slope of the northwestern South China Sea[J]. Journal of Geophysical Research: Oceans, 2013, 118(1): 197-211.
    Wunsch C. Internal tides in the ocean[J]. Reviews of Geophysics, 1975, 13(1): 167-182.
    Kelly S M, Nash J D. Internal-tide generation and destruction by shoaling internal tides[J]. Geophysical Research Letters, 2010, 37(23):817-824.
    Liu Qqian, Xie Xiaohui, Shang Xiaodong, et al. Coherent and incoherent internal tides in the southern South China Sea[J]. Chinese Journal of Oceanology and Limnology, 2016, 34: 1374-1382.
    Pickering A, Alford M, Nash J, et al. Structure and variability of internal tides in Luzon Strait[J]. Journal of Physical Oceanography, 2015, 45(6): 1574-1594.
    Van Haren H. Incoherent internal tidal currents in the deep ocean[J]. Ocean Dynamics, 2004, 54(1): 66-76.
    Guo C, Chen X. A review of internal solitary wave dynamics in the northern South China Sea[J]. Progress in Oceanography, 2014, 121: 7-23.
    Lee I-Huan, Wang Yuhuai, Yang Yih, et al. Temporal variability of internal tides in the northeast South China Sea[J]. Journal of Geophysical Research: Oceans, 2012, 117(C2): C02013.
    Zhao Z, Alford M H, MacKinnon J A, et al. Long-range propagation of the semidiurnal internal tide from the Hawaiian Ridge[J]. Journal of Physical Oceanography, 2010, 40(4): 713-736.
    Zhao Z, Alford M H. New altimetric estimates of mode-1 M2 internal tides in the central North Pacific Ocean[J]. Journal of Physical Oceanography, 2009, 39(7): 1669-1684.
    Van Haren H. Tidal and near-inertial peak variations around the diurnal critical latitude[J]. Geophysical Research Letters, 2005, 32(23):113-133.
    Rainville L, Pinkel R. Propagation of low-mode internal waves through the ocean[J]. Journal of Physical Oceanography, 2006, 36(6): 1220-1236.
    Gonella J. A rotary-component method for analysing meteorological and oceanographic vector time series[J]. Deep-Sea Research & Oceanographic Abstracts, 1972, 19(12):833-846.
    管守德. 南海北部近惯性振荡研究[D]. 青岛: 中国海洋大学, 2014. Guan Shoude. Near inertial oscillations in the northern South China Sea[D]. Qingdao: Ocean University of China, 2014.
    方泳. 吕宋海峡内潮的季节变化特征及其对黑潮和台风的响应研究[D]. 北京: 中国科学院大学, 2014. Fang Yong. Seasonal characteristics of the internal tides and its response to Kuroshio and typhoons in the Luzon Strait[D]. Beijing: University of Chinese Academy of Sciences, 2014.
    刘倩. 南海内潮的结构与变化[D]. 北京: 中国科学院大学, 2016. Liu Qian. Structure and variability of internal tides in the South China Sea[D]. Beijing: University of Chinese Academy of Sciences, 2016.
    Lamb K G. Internal wave breaking and dissipation mechanisms on the continental slope/shelf[J]. Annual Review of Fluid Mechanics, 2014, 46(1): 231-254.
    Zilberman N V, Becker J M, Merrifield M A, et al. Model estimates of M2 internal tide generation over Mid-Atlantic Ridge topography[J]. Journal of Physical Oceanography, 2009, 39(10): 2635-2651.
    Klymak J M, Alford M H, Pinkel R, et al. The breaking and scattering of the internal tide on a continental slope[J]. Journal of Physical Oceanography, 2011, 41(5): 926-945.
    Duda T F, Rainville L. Diurnal and semidiurnal internal tide energy flux at a continental slope in the South China Sea[J]. Journal of Geophysical Research: Oceans, 2008, 113(C3): C03025.
  • 加载中
计量
  • 文章访问数:  677
  • HTML全文浏览量:  11
  • PDF下载量:  514
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-28
  • 修回日期:  2017-03-24

目录

    /

    返回文章
    返回