留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于解析解的长江口南港悬沙侧向捕集特征分析

杨忠勇 王钟 程和琴 郭兴杰 曹振轶

杨忠勇, 王钟, 程和琴, 郭兴杰, 曹振轶. 基于解析解的长江口南港悬沙侧向捕集特征分析[J]. 海洋学报, 2017, 39(5): 22-32. doi: 10.3969/j.issn.0253-4193.2017.05.003
引用本文: 杨忠勇, 王钟, 程和琴, 郭兴杰, 曹振轶. 基于解析解的长江口南港悬沙侧向捕集特征分析[J]. 海洋学报, 2017, 39(5): 22-32. doi: 10.3969/j.issn.0253-4193.2017.05.003
Yang Zhongyong, Wang Zhong, Cheng Heqin, Guo Xingjie, Cao Zhenyi. Analytical study of the sediment transport in the South Channel of Yangtze Estuary, China[J]. Haiyang Xuebao, 2017, 39(5): 22-32. doi: 10.3969/j.issn.0253-4193.2017.05.003
Citation: Yang Zhongyong, Wang Zhong, Cheng Heqin, Guo Xingjie, Cao Zhenyi. Analytical study of the sediment transport in the South Channel of Yangtze Estuary, China[J]. Haiyang Xuebao, 2017, 39(5): 22-32. doi: 10.3969/j.issn.0253-4193.2017.05.003

基于解析解的长江口南港悬沙侧向捕集特征分析

doi: 10.3969/j.issn.0253-4193.2017.05.003
基金项目: 国家自然科学基金(41506103,41476075);卫星海洋环境动力学国家重点实验室开放基金(SOED1705)。

Analytical study of the sediment transport in the South Channel of Yangtze Estuary, China

  • 摘要: 为探讨长江口南港的水动力结构及悬沙侧向输运特征,本文从解析解的角度构建了潮汐河口水沙输运数学模型,并将其应用到长江口南港某横断面上。南港水动力主控于半日潮流,余流主要由陆相径流及本地非线性对流项驱动,悬沙分布上北侧副槽远大于南侧主槽,水沙分布的计算结果与实测结果在结构上基本一致。通过输沙函数进一步分析表明,潮流输沙和余流输沙是南港侧向输沙函数的两个主要部分。南港中强劲径流削弱了涨潮流,增强了落潮流,使得向河槽南侧的涨潮流输沙小于向河槽北侧的落潮流输沙,潮流输沙指向河槽北侧。径流驱动的南港侧向余流在涨潮流方向上为一逆时针环流结构,余流输沙指向河槽北侧。扩散输沙指向南侧主槽,因其总是指向悬沙浓度梯度的负方向。在各输沙因子的综合作用下,南港中大量悬沙捕集于河槽北侧,使得河槽北部底层潮平均含沙量值达到最大值。
  • Dyer K R. Estuaries: A Physical Introduction[M]. 2nd edition. England:Wiley Press, 1973.
    乐嘉钻,陈志昌,阮伟. 长江口深水航道的选择及其治理原则[J]. 水利水运工程学报,2005(2):1-8. Le Jiazuan, Chen Zhichang, Ruan Wei. Selection and training principle of the deep channel in the Yangtze Estuary[J]. Hydro-scienceand Engineering, 2005(2): 1-8.
    周伟华,袁翔城,霍文毅,等. 长江口邻域叶绿素a和初级生产力的分布[J]. 海洋学报, 2004, 26(3): 143-150. Zhou Weihua, Yuan Xiangcheng, HuoWenyi, et al. Distribution of chlorophyll a and primary productivity in the adjacentsea area of Changjiang River Estuary[J]. Haiyang Xuebao, 2004, 26(3): 143-150.
    王康墡,苏纪兰. 长江口南港环流及悬移物质输运的计算方法[J]. 海洋学报, 1987, 9(5): 627-637. Wang Kangshan, Su Jilan. A computation method of residual current and sediment transport in South Channel of Yangtze estuary[J]. Haiyang Xuebao, 1987, 9(5): 627-637.
    刘高峰,朱建荣,沈焕庭,等. 河口涨落潮槽水沙输运机制分析研究[J]. 泥沙研究, 2005(5): 51-57. Liu Gaofeng, Zhu Jianrong, Shen Huanting, et al. Study on mechanism of water and suspended sediment transport in flood and ebb channels[J]. Journal of Sediment Research, 2005(5): 51-57.
    Liu Gaofeng, Zhu Jianrong, Wang Yuanye, et al. Tripod measured residual currents and sediment flux: Impacts on the silting of the Deepwater Navigation Channel in the Changjiang Estuary[J]. Estuarine, Coastal and Shelf Science, 2010, 93: 192-201.
    Huijts K M, Schuttelaars HM, De Swart H E,et al. Lateral entrapment of sediment in tidal estuaries: An idealized model study[J]. Journal of Geophysical Research, 2006, 111: C12016.
    Yang Zhongyong, De Swart H E, Cheng Heqin, et al. Modeling the lateral entrapment of suspended sediment in estuaries: The role of spatial lags in settling and tidal flow[J]. Continental Shelf Research, 2014, 85: 126-142.
    Hansen D V, Rattray M. Gravitational circulation in straits and estuaries[J]. Journal of Marine Research, 1965, 23: 104-122.
    Chernetsky A S, Schuttelaars H M, Talke S A. The effect of tidal asymmetry and temporal settling lag on sediment trapping in tidal estuaries[J]. Ocean Dynamics, 2010, 60(5):1219.
    Jiang Chenjuan, De Swart H E, Li Jiufa, et al. Mechanisms of along-channel sediment transport in the North Passage of the Yangtze Estuary and their response to large-scale interventions[J]. Ocean Dynamics, 2013, 63(2): 283-305.
    Wong K C. On the nature of transverse variability in a coastal plain estuary[J]. Journal of Geophysical Research, 1994, 99(14): 209-222.
    Huijts K M, Schuttelaars H M, De Swart H E, et al. Analytical study of the transverse distribution of along-channel and transverse residual flows in tidal estuaries[J]. Continental Shelf Research, 2009, 29(1): 89-100.
    Friedrichs C T, Hamrick J M. Effects of channel geometry oncross-sectional variation in along-channel velocity in partially mixedtidal estuaries[M]//BuoyancyEffects on Coastal and Estuarine Dynamics. Washington D C: American Geophysical Union, 1996: 265-281.
    Munk W H, Anderson E R. Notes on a theory of the thermocline[J]. Journal of Marine Research, 1948, 7: 276-295.
    Gill A E. Atmosphere-Ocean Dynamics, International Geophysical Services[M]. New York: Elsevier, 1982.
    Fischer H B, List E J, Koh R Y C, et al. Mixing in Inland and Coastal Waters[M]. New York: Elsevier, 1979.
    Smith J D, McLean S R. Spatially averaged flow over a wavy surface[J]. Journal of Geophysical Research, 1977, 82(12): 1735-1746.
    Dyer K R. Coastal and Estuarine Sediment Dynamics[M]. Chichester: John Wiley and Sons, 1986.
    Yang Zhongyong, Cheng Heqin, Li Jiufa. Nonlinear advection, Coriolis force and frictional influence in South Channel of Yangtze Estuary[J]. China Science China Earth, 2015, 58(3): 429-435.
    左书华. 长江河口典型河段水动力、泥沙特征及其影响因素分析[D]. 上海: 华东师范大学, 2006. Zuo Shuhua. Difference of hydrodynamics and sediment characters at typical reaches & analysis to factors in the Yangtze Estuary[D]. Shanghai: East China Normal University, 2006.
    孔亚珍,贺松林,丁平兴,等. 长江口盐度的时空变化特征及其指示意义[J]. 海洋学报, 2004, 26(4): 9-18. Kong Yazhen, He Songlin, Ding Pingxing, et al. Characteristics of temporal and spatial variation of salinity andtheir indicating significance in the Changjiang Estuary[J]. Haiyang Xuebao, 2004, 26(4): 9-18.
    时钟. 河口海岸细颗粒泥沙物理过程[M]. 上海: 上海交通大学出版社, 2013. Shi Zhong. Physical Process of Fine Sediment in Estuarine and Coastal Area[M]. Shanghai: Shanghai Jiaotong University Press, 2013.
  • 加载中
计量
  • 文章访问数:  799
  • HTML全文浏览量:  3
  • PDF下载量:  751
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-08
  • 修回日期:  2016-09-27

目录

    /

    返回文章
    返回