Submarine groundwater discharge into Sanggou Bay traced by 223Ra and 224Ra
-
摘要:
海底地下水排放(SGD)是陆地向海洋输送水量和营养物质的重要通道之一,对沿海物质通量及其生物地球化学循环有重要的影响,对生态环境起着不可忽视的作用。本文运用天然放射性同位素223Ra和224Ra示踪估算了我国北方典型养殖基地桑沟湾的海底地下水排放通量。结果表明,海底地下水样尤其是间隙水中Ra活度[224Ra=(968±31)dpm/(100 L),223Ra=(31.4±4.9)dpm/(100 L),n=9]远高于表层海水[224Ra=(38.7±2.0)dpm/(100 L),223Ra=(1.70±0.50)dpm/(100 L), n=21]。假设稳态条件下,考虑Ra的各源、汇项,利用Ra平衡模型,估算出桑沟湾SGD排放通量为(0.23~1.03)×107 m3/d。潮周期内的观测结果显示,涨潮时,水力梯度较小,SGD排放变弱,落潮时,水力梯度较大,导致了相对较多的SGD排放。在一个潮周期间,基于223Ra和224Ra得到的SGD排放通量平均为0.39×107 m3/d。潮汐动力下的SGD排放平均占总SGD排放的61%,因此桑沟湾沿岸的地下水排放主要受潮汐动力的影响,并对海水组成及海陆间物质交换有显著贡献。
Abstract:Submarine groundwater discharge (SGD) with inputs of nutrients and water into the ocean in certain regions plays a significant role in coastal material fluxes and their biogeochemical cycle, which cannot be ignored for its impact on the eco-system. In this paper, SGD into the typical aquaculture base of northern China, Sanggou Bay, was estimated using naturally occurring radium isotopes, 223Ra and 224Ra. Results showed that the radium activities of submarine groundwater, especially in the pore water [224Ra=(968±31) dpm/(100 L), 223Ra=(31.4±4.9) dpm/(100 L), n=9], were obviously greater than those in the surface water [224Ra=(38.7±2.0) dpm/(100 L),223Ra=(1.70±0.50) dpm/(100 L), n=21]. Assuming steady state and using a radium mass balance model with sources and sinks, the SGD rate was estimated to be among (0.23~1.03) ×107 m3/d. SGD flux varied from spring tide to ebb tide. During spring tide, SGD flux was smaller because of weak hydraulic gradient while it was much larger during ebb tide because of strong hydraulic gradient. During a tidal cycle, the SGD flux was averaged to be 0.39×107 m3/d based on 223Ra and 224Ra. Tidal-driven SGD can account for 61% of the total SGD. Therefore, the main driving force of SGD into Sanggou Bay was tidal pumping and SGD of Sanggou Bay in coastal zone contributes a lot to seawater composition and material exchange between land and sea.
-
Key words:
- radium isotopes /
- submarine groundwater discharge /
- balance model /
- tidal pumping /
- Sanggou Bay
-
Johannes R E. The ecological significance of the submarine discharge of groundwater[J]. Marine Ecology Progress Series, 1980, 3(4): 365-373. Maher D T, Santos I R, Golsby-Smith L, et al. Groundwater-derived dissolved inorganic and organic carbon exports from a mangrove tidal creek: the missing mangrove carbon sink[J]. Limnology and Oceanography, 2013, 58(2): 475-488. Kwon E Y, Kim G, Primeau F, et al. Global estimate of submarine groundwater discharge based on an observationally constrained radium isotope model[J]. Geophysical Research Letters, 2014, 41(23): 8438-8444. Webster I T, Hancock G J, Murray A S. Use of radium isotopes to examine pore-water exchange in an estuary[J]. Limnology and Oceanography, 1994, 39(8): 1917-1927. Rama, Moore W S. Using the radium quartet for evaluating groundwater input and water exchange in salt marshes[J]. Geochimica et Cosmochimica Acta, 1996, 60(23): 4645-4652. Hancock G J, Webster I T, Ford P W, et al. Using Ra isotopes to examine transport processes controlling benthic fluxes into a shallow estuarine lagoon[J]. Geochimica et Cosmochimica Acta, 2000, 64(21): 3685-3699. Krest J M, Harvey J W. Using natural distributions of short-lived radium isotopes to quantify groundwater discharge and recharge[J]. Limnology and Oceanography, 2003, 48(1): 290-298. Beck A J, Rapaglia J P, Cochran J K, et al. Radium mass-balance in Jamaica Bay, NY: evidence for a substantial flux of submarine groundwater[J]. Marine Chemistry, 2007, 106(3/4): 419-441. Colbert S L, Hammond D E. Shoreline and seafloor fluxes of water and short-lived Ra isotopes to surface water of San Pedro Bay, CA[J]. Marine Chemistry, 2008, 108(1/2): 1-17. Moore W S, Beck M, Riedel T, et al. Radium-based pore water fluxes of silica, alkalinity, manganese, DOC, and uranium: a decade of studies in the German Wadden Sea[J]. Geochimica et Cosmochimica Acta, 2011, 75(21): 6535-6555. 黄磊. 九龙江河口区的地下水输入研究[D]. 厦门: 厦门大学, 2009. Huang Lei. Research on groundwater discharge into Jiulongjiang Estuary[D]. Xiamen: Xiamen University, 2009. 郭占荣, 黄磊, 刘花台, 等. 镭同位素示踪隆教湾的海底地下水排泄[J]. 地球学报, 2008, 29(5): 647-652. Guo Zhanrong, Huang Lei, Liu Huatai, et al. The estimation of submarine inputs of groundwater to a coastal bay using radium isotopes[J]. Acta Geoscientica Sinica, 2008, 29(5): 647-652. 郭占荣, 黄磊, 袁晓婕, 等. 用镭同位素评价九龙江河口区的地下水输入[J]. 水科学进展, 2011, 22(1): 118-125. Guo Zhanrong, Huang Lei, Yuan Xiaojie, et al. Estimating submarine groundwater discharge to the Jiulong River estuary using Ra isotopes[J]. Advances in Water Science, 2011, 22(1): 118-125. 郭占荣, 李开培, 袁晓婕, 等. 用氡-222评价五缘湾的地下水输入[J]. 水科学进展, 2012, 23(2): 263-270. Guo Zhanrong, Li Kaipei, Yuan Xiaojie, et al. Assessment of submarine groundwater discharge into the Wuyuan Bay via continuous Radon-222 measurements[J]. Advances in Water Science, 2012, 23(2): 263-270. Peterson R N, Burnett W C, Taniguchi M, et al. Radon and radium isotope assessment of submarine groundwater discharge in the Yellow River delta, China[J]. Journal of Geophysical Research, 2008, 113(C9): C09021. Tse K C, Jiao J J. Estimation of submarine groundwater discharge in Plover Cove, Tolo Harbour, Hong Kong by 222Rn[J]. Marine Chemistry, 2008, 111(3/4): 160-170. Su Ni, Du Jinzhou, Moore W S, et al. An examination of groundwater discharge and the associated nutrient fluxes into the estuaries of eastern Hainan Island, China using 226Ra[J]. Science of the Total Environment, 2011, 409(19): 3909-3918. Gu Hequan, Moore W S, Zhang Lei, et al. Using radium isotopes to estimate the residence time and the contribution of submarine groundwater discharge (SGD) in the Changjiang effluent plume, East China Sea[J]. Continental Shelf Research, 2012, 35: 95-107. Liu Q, Dai M, Chen W, et al. How significant is submarine groundwater discharge and its associated dissolved inorganic carbon in a river-dominated shelf system[J]. Biogeosciences, 2012, 9(5): 1777-1795. Ji Tao, Du Jinzhou, Moore W S, et al. Nutrient inputs to a Lagoon through submarine groundwater discharge: the case of Laoye Lagoon, Hainan, China[J]. Journal of Marine Systems, 2013, 111-112: 253-262. 夏东兴, 王文海, 刘传信, 等. 中国海湾志·第三分册·山东半岛北部和东部海湾·第九章[M]. 北京: 海洋出版社, 1991. Xia Dongxing, Wang Wenhai, Liu Chuanxin, et al. The Journal of Chinese Gulf-The Third Section: Bays of the Northern and Eastern Shandong Peninsula-Chapter 9[M]. Beijing: China Ocean Press, 1991. 毛兴华, 张为先, 张建中. 桑沟湾增养殖环境综合调查研究[M]. 青岛: 青岛出版社, 1988. Mao Xinghua, Zhang Weixian, Zhang Jianzhong. The Comprehensive Investigation of Aquaculture in Sanggou Bay[M]. Qingdao: Qingdao Press, 1988. Wang Xilong, Du Jinzhou, Ji Tao, et al. An estimation of nutrient fluxes via submarine groundwater discharge into the Sanggou Bay-a typical multi-species culture ecosystem in China[J]. Marine Chemistry, 2014, 167: 113-122. Moore W S. Sampling 228Ra in the deep ocean[J]. Deep-Sea Research and Oceanographic Abstracts, 1976, 23(7): 647-651. 谷河泉, 杜金洲, 吴梅桂, 等. 镭延迟符合计数器(RaDeCC)测量海水中的224Ra和223Ra[J]. 海洋环境科学, 2015, 34(4): 570-577. Gu Hequan, Du Jinzhou, Wu Meigui, et al. Precise determination of 224Ra and 223Ra in seawaters By RaDeCC[J]. Marine Environmental Science, 2015, 34(4): 570-577. 李磊, 任景玲, 刘素美, 等. 桑沟湾溶解态无机砷的分布、季节变化及影响因素[J]. 环境科学, 2014, 35(7): 2705-2713. Li Lei, Ren Jingling, Liu Sumei, et al. Distribution, seasonal variation and influence factors of dissolved inorganic arsenic in the Sanggou Bay[J]. Environmental Science, 2014, 35(7): 2705-2713. Moore W S. Radium-228 in the south Atlantic bight[J]. Journal of Geophysical Research, 1987, 92(C5): 5177-5190. Dronkers J, Zimmerman J T F. Some principles of mixing in tidal lagoons//Lasserre P, et al. (Ed.) Coastal lagoons: Proceedings of the international symposium on coastal lagoons, Bordeaux, France, 8-14 September 1981[J]. Oceanologica Acta, 1982, 4(S): 107-117. Monsen N E, Cloern J E, Lucas L V, et al. A comment on the use of flushing time, residence time, and age as transport time scales[J]. Limnology and Oceanography, 2002, 47(5): 1545-1553. Moore W S, Blanton J O, Joye S B. Estimates of flushing times, submarine groundwater discharge, and nutrient fluxes to Okatee Estuary, South Carolina[J]. Journal of Geophysical Research, 2006, 111(C9): C09006, doi: 10.1029/2005JC003041. Sanford L P, Boicourt W C, Rives S R. Model for estimating tidal flushing of small embayments[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1992, 118(6): 635-654. Wang Guizhi, Wang Zhangyong, Zhai Weidong, et al. Net subterranean estuarine export fluxes of dissolved inorganic C, N, P, Si, and total alkalinity into the Jiulong River estuary, China[J]. Geochimica et Cosmochimica Acta, 2015, 149: 103-114. Krest J M, Moore W S, Rama. 226Ra and 228Ra in the mixing zones of the Mississippi and Atchafalaya Rivers: indicators of groundwater input[J]. Marine Chemistry, 1999, 64(3): 129-152. 蔡立胜, 方建光, 董双林. 桑沟湾养殖海区沉积物-海水界面氮、磷营养盐的通量[J]. 海洋水产研究, 2004, 25(4): 57-64. Cai Lisheng, Fang Jianguang, Dong Shuanglin. Preliminary studies on nitrogen and phosphorus fluxes between seawater and sediment in Sungo Bay[J]. Marine Fisheries Research, 2004, 25(4): 57-64. Li Yuanhui, Gregory S. Diffusion of ions in sea water and in deep-sea sediments[J]. Geochimica et Cosmochimica Acta, 1974, 38(5): 703-714. 洪华生. 中国区域海洋学——化学海洋学[M]. 北京: 海洋出版社, 2012. Hong Huasheng. Regional Oceanography of China Seas-Chemical Oceanography[M]. Beijing: China Ocean Press, 2012. Moore W S. Seasonal distribution and flux of radium isotopes on the southeastern U.S. continental shelf[J]. Journal of Geophysical Research, 2007, 112(C10): C10013. 陈聚法, 赵俊, 孙耀, 等. 桑沟湾贝类养殖水域沉积物再悬浮的动力机制及其对水体中营养盐的影响[J]. 海洋水产研究, 2007, 28(3): 105-111. Chen Jufa, Zhao Jun, Sun Yao, et al. Dynamic mechanism of sediment resuspension with its effects on content of nutrients in water in the shellfish culture area of Sanggou Bay[J]. Marine Fisheries Research, 2007, 28(3): 105-111. Garcia-Orellana J, Cochran J K, Bokuniewicz H, et al. Time-series sampling of 223Ra and 224Ra at the inlet to Great South Bay (New York): a strategy for characterizing the dominant terms in the Ra budget of the bay[J]. Journal of Environmental Radioactivity, 2010, 101(7): 582-588. 杜鹏. 夏季桑沟湾三维水质数值模拟[D]. 青岛: 中国海洋大学, 2009. Du Peng. The three-dimensional water quality numerical simulation in Sanggou Bay in summer[D]. Qingdao: Ocean University of China, 2009. Ma Qian, Li Hailong, Wang Xuejing, et al. Estimation of seawater-groundwater exchange rate: case study in a tidal flat with a large-scale seepage face (Laizhou Bay, China)[J]. Hydrogeology Journal, 2015, 23(2): 265-275. Wang Xuejing, Li Hailong, Jiao J J, et al. Submarine fresh groundwater discharge into Laizhou Bay comparable to the Yellow River flux[J]. Scientific Reports, 2015, 5: 8814. Wang Guizhi, Jing Wenping, Wang Shuling, et al. Coastal acidification induced by tidal-driven submarine groundwater discharge in a coastal coral reef system[J]. Environmental Science & Technology, 2014, 48(22): 13069-13075. Kim G, Ryu J W, Yang H S, et al. Submarine groundwater discharge (SGD) into the Yellow Sea revealed by 228Ra and 226Ra isotopes: implications for global silicate fluxes[J]. Earth and Planetary Science Letters, 2005, 237(1/2): 156-166. Wu Zijun, Zhou Huaiyang, Zhang Shuai, et al. Using 222Rn to estimate submarine groundwater discharge (SGD) and the associated nutrient fluxes into Xiangshan Bay, East China Sea[J]. Marine Pollution Bulletin, 2013, 73(1): 183-191. Xu Bochao, Burnett W, Dimova N, et al. Hydrodynamics in the Yellow River Estuary via radium isotopes: ecological perspectives[J]. Continental Shelf Research, 2013, 66: 19-28. Wen Tingyu, Du Jinzhou, Ji Tao, et al. Use of 222Rn to trace submarine groundwater discharge in a tidal period along the coast of Xiangshan, Zhejiang, China[J]. Journal of Radioanalytical and Nuclear Chemistry, 2014, 299(1): 53-60. Luo Xin, Jiao J J, Moore W S, et al. Submarine groundwater discharge estimation in an urbanized embayment in Hong Kong via short-lived radium isotopes and its implication of nutrient loadings and primary production[J]. Marine Pollution Bulletin, 2014, 82(1/2): 144-154. Xia Dong, Yu Zhigang, Xu Bochao, et al. Variations of hydrodynamics and submarine groundwater discharge in the Yellow River Estuary under the influence of the water-sediment regulation scheme[J]. Estuaries and Coasts, 2016, 39(2): 333-343. -
计量
- 文章访问数: 834
- HTML全文浏览量: 20
- PDF下载量: 342
- 被引次数: 0