留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多源水深数据融合的海底高精度地形重建

樊妙 孙毅 邢喆 王祎婷 李四海 金继业

樊妙, 孙毅, 邢喆, 王祎婷, 李四海, 金继业. 基于多源水深数据融合的海底高精度地形重建[J]. 海洋学报, 2017, 39(1): 130-137. doi: 10.3969/j.issn.0253-4193.2017.01.014
引用本文: 樊妙, 孙毅, 邢喆, 王祎婷, 李四海, 金继业. 基于多源水深数据融合的海底高精度地形重建[J]. 海洋学报, 2017, 39(1): 130-137. doi: 10.3969/j.issn.0253-4193.2017.01.014
Fan Miao, Sun Yi, Xing Zhe, Wang Yiting, Li Sihai, Jin Jiye. Bathymetry fusion techniques for high-resolution digital bathymetric modeling[J]. Haiyang Xuebao, 2017, 39(1): 130-137. doi: 10.3969/j.issn.0253-4193.2017.01.014
Citation: Fan Miao, Sun Yi, Xing Zhe, Wang Yiting, Li Sihai, Jin Jiye. Bathymetry fusion techniques for high-resolution digital bathymetric modeling[J]. Haiyang Xuebao, 2017, 39(1): 130-137. doi: 10.3969/j.issn.0253-4193.2017.01.014

基于多源水深数据融合的海底高精度地形重建

doi: 10.3969/j.issn.0253-4193.2017.01.014
基金项目: “全球变化与海气相互作用”专项资助(GASI-01-01-11)。

Bathymetry fusion techniques for high-resolution digital bathymetric modeling

  • 摘要: 本文在研究多源水深数据构建技术的基础上,分析了张力样条插值算法和“移去-恢复”法的多源水深数据融合处理技术,基于该方法选取实验区,利用多波束、单波束、历史海图等多源水深数据进行高精度海底地形融合试验,并针对多源水深融合技术缺少误差评估的现状,利用split-sample方法对融合结果进行水深不确定性评估,形成融合结果的可靠性空间分布。结果表明该方法无论是在数据稀疏区还是高密度区都达到了较好的融合效果,既保留了高分辨率水深数据的细节信息,又较真实的反映了研究区海底地形特征,且构建的海底地形精度可靠,误差百分比集中在0.5%。本文整套数据融合和结果评估方法可为多源水深数据融合的海底高精度地形构建提供借鉴和参考。
  • Sandwell D, Smith W H F. Bathymetric Estimation[M]//Fu L L, Cazenave A. Satellite Altimetry and Earth Sciences:A Handbook of Techniques and Applications. San Diego, CA:Academic Press, 2001:441-457.
    Becker J J, Sandwell D T, Smith W H F, et al. Global bathymetry and elevation data at 30 arc seconds resolution:srtm30_plus[J]. Marine Geodesy, 2009, 32(4):355-371.
    Jakobsson M, Calder B, Mayer L. On the effect of random errors in gridded bathymetric compilations[J]. Journal of Geophysical Research, 2002, 107(B12):ETG 14-1-ETG 14-11.
    Elmore P A, Steed C A. Algorithm design study for bathymetry fusion-review of current state-of-the-art and recommended design approach[R]. San Diego, CA:Naval Research Laboratory, Marine Geosciences Division, 2008
    Gesch D, Wilson R. Development of a seamless multisource topographic/bathymetric elevation model of tampa bay[J]. Marine Technology Society Journal, 2002, 35(4):58-64.
    Alcȃntara E, Novo E, Stech J, et al. Integrating historical topographic maps and SRTM data to derive the bathymetry of a tropical reservoir[J]. Journal of Hydrology, 2010, 389(3/4):311-316.
    Jha S K, Bailey B, Minsker B S, et al. Updating river bathymetry with multiple data sources using kriging[C]//American Geophysical Union, Fall Meeting 2011. Denver, CO:American Geophysical Union, 2011:1329.
    Carter G S, Shankar U. Creating rectangular bathymetry grids for environmental numerical modelling of gravel-bed rivers[J]. Applied Mathematical Modelling, 1997, 21(11):699-708.
    Hell B, Jakobsson M. Gridding heterogeneous bathymetric data sets with stacked continuous curvature splines in tension[J]. Marine Geophysical Research, 2011, 32(4):493-501.
    Sindhu B, Suresh I, Unnikrishnan A S, et al. Improved bathymetric datasets for the shallow water regions in the Indian Ocean[J]. Journal of Earth System Science, 2007, 116(3):261-274.
    Jakobsson M, Mayer L, Coakley B, et al. The international bathymetric chart of the Arctic Ocean (IBCAO) Version 3.0[J]. Geophysical Research Letters, 2012, 39(12):L12609.
    Arndt J E, Schenke H W, Jakobsson M, et al. The International Bathymetric Chart of the Southern Ocean (IBCSO) Version 1.0-a new bathymetric compilation covering circum-antarctic waters[J]. Geophysical Research Letters, 2013, 40(12):3111-3117.
    Jha S K, Mariethoz G, Kelly B F J. Bathymetry fusion using multiple-point geostatistics:novelty and challenges in representing non-stationary bedforms[J]. Environmental Modelling & Software, 2013, 50:66-76.
    Smith W H F, Sandwell D T. Global sea floor topography from satellite altimetry and ship depth soundings[J]. Science, 1997, 277(5334):1956-1962.
    Smith W H F, Wessel P. Gridding with continuous curvature splines in tension[J]. Geophysics, 1990, 55(3):293-305.
    Jakobsson M, Macnab R,Mayer L, et al. An improved bathymetric portrayal of the Arctic Ocean:implications for ocean modeling and geological, geophysical and oceanographic analyses[J]. Geophysical Research Letters, 2008, 35(7):L07602.
    Forsberg R, Tscherning C C. The use of height data in gravity field approximation by collocation[J]. Journal of Geophysical Research:Solid Earth, 1981, 86(B9):7843-7854.
    Calder B. On the uncertainty of archive hydrographic data sets[J]. IEEE Journal of Oceanic Engineering, 2006, 31(2):249-265.
    王耀革. DEM建模与不确定性分析[D]. 郑州:解放军信息工程大学, 2009:21-32. Wang Yaoge. Study of DEM generation and uncertainty[D]. Zhengzhou:PLA Information Engineering University, 2009:21-32.
    Hare R, Eakins B, Amante C. Modelling bathymetric uncertainty[J]. International Hydrographic Review, 2011, 4(2):31-42.
    International Hydrographic Organization, Intergovernmental Oceanographic Commission.IOC Manuals and Guides 63[S].Monaco:IHO Publication B-11,2015:429.
    刘艳霞, 黄海军, 杨晓阳. 基于遥感反演的莱州湾悬沙分布及其沉积动力分析[J]. 海洋学报, 2013, 35(6):43-53. Liu Yanxia, Huang Haijun, Yang Xiaoyang. The transportation and deposition of suspended sediment and its dynamic mechanism analysis based on Landsat images in the Laizhou Bay[J].Haiyang Xuebao, 2013, 35(6):43-53.
  • 加载中
计量
  • 文章访问数:  1072
  • HTML全文浏览量:  20
  • PDF下载量:  1077
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-29
  • 修回日期:  2016-08-21

目录

    /

    返回文章
    返回