留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

青岛灵山湾筏式养殖魁蚶食物来源的季节变动研究

蔡星媛 张秀梅 刘甜雨 李文涛 张沛东

蔡星媛, 张秀梅, 刘甜雨, 李文涛, 张沛东. 青岛灵山湾筏式养殖魁蚶食物来源的季节变动研究[J]. 海洋学报, 2016, 38(12): 106-117. doi: 10.3969/j.issn.0253-4193.2016.12.011
引用本文: 蔡星媛, 张秀梅, 刘甜雨, 李文涛, 张沛东. 青岛灵山湾筏式养殖魁蚶食物来源的季节变动研究[J]. 海洋学报, 2016, 38(12): 106-117. doi: 10.3969/j.issn.0253-4193.2016.12.011
Cai Xingyuan, Zhang Xiumei, Liu Tianyu, Li Wentao, Zhang Peidong. Seasonal variation in the food sources of the ark-shell Anadara broughtonii in raft culture in Lingshan Bay, Qingdao[J]. Haiyang Xuebao, 2016, 38(12): 106-117. doi: 10.3969/j.issn.0253-4193.2016.12.011
Citation: Cai Xingyuan, Zhang Xiumei, Liu Tianyu, Li Wentao, Zhang Peidong. Seasonal variation in the food sources of the ark-shell Anadara broughtonii in raft culture in Lingshan Bay, Qingdao[J]. Haiyang Xuebao, 2016, 38(12): 106-117. doi: 10.3969/j.issn.0253-4193.2016.12.011

青岛灵山湾筏式养殖魁蚶食物来源的季节变动研究

doi: 10.3969/j.issn.0253-4193.2016.12.011
基金项目: 海洋公益性行业科研专项(201405010,201305043);青岛海洋科学与技术国家实验室鳌山科技创新计划项目(2015ASKJ01)。

Seasonal variation in the food sources of the ark-shell Anadara broughtonii in raft culture in Lingshan Bay, Qingdao

  • 摘要: 魁蚶(Anadara broughtonii)是我国北方重要的经济贝类,筏式养殖是其主要的生产方式。2014年5月至2015年1月,测定了不同季节灵山湾筏式养殖魁蚶及其3种潜在食物源(表层颗粒有机物SPOM、底层颗粒有机物BPOM和附着微藻AM)的碳氮稳定同位素(δ13C和δ15N),结合胃含物分析研究了海区食物源结构的季节变化对魁蚶食物组成的影响。结果显示,魁蚶及其食物源的稳定同位素比值均存在明显的季节差异,魁蚶的δ13C值(-19.6‰~-19.2‰)介于SPOM (-23.3‰~-21.8‰)、BPOM (-22.1‰~-21.2‰)和AM(-17.0‰~-16.0‰)之间,δ15N值范围集中在8.7‰~9.9‰。冬季魁蚶的δ13C值最低,δ15N值则最富集。水体颗粒有机物(主要由浮游植物组成)是魁蚶的主要食物来源(60.0%~77.8%),以夏季的饵料贡献率最高;海区再悬浮作用使BPOM的贡献率始终维持在较高水平(30.8%~47.1%);而养殖网笼上的附着微藻也可为魁蚶提供约22.1%~40.0%的食物。研究揭示了筏式养殖魁蚶可以混合滤食颗粒有机物和附着微藻,附着微藻是其重要的食物补充。
  • Crocker K M, Passow U. Differential aggregation of diatoms[J]. Marine Ecology Progress Series, 1995, 117(1):249-257.
    Fukumori K, Oi M, Doi H, et al. Food sources of the pearl oyster in coastal ecosystems of Japan:evidence from diet and stable isotope analysis[J]. Estuarine, Coastal and Shelf Science, 2008, 76(3):704-709.
    Kang C K, Kang Y S, Choy E J, et al. Condition, reproductive activity, and gross biochemical composition of the Manila clam, Tapes philippinarum in natural and newly created sandy habitats of the southern coast of Korea[J]. Journal of Shellfish Research, 2007, 26(2):401-412.
    Yokoyama H, Ishihi Y. Feeding of the bivalve Theora lubrica on benthic microalgae:isotopic evidence[J]. Marine Ecology Progress Series, 2003, 255:303-309.
    Doi H, Chang K H, Obayashi Y, et al. Attached microalgae contribute to planktonic food webs in bays with fish and pearl oyster farms[J]. Marine Ecology Progress Series, 2008, 353:107-113.
    Hsieh H L, Kao Wenyuan, Chen Changpo, et al. Detrital flows through the feeding pathway of the oyster (Crassostrea gigas) in a tropical shallow lagoon:δ13C signals[J]. Marine Biology, 2000, 136(4):677-684.
    Vander Zanden M, Rasmussen J B. Variation in δ15N and δ13C trophic fractionation:implications for aquatic food web studies[J]. Limnology and Oceanography, 2001, 46(8):2061-2066.
    Doi H, Matsumasa M, Toya T, et al. Spatial shifts in food sources for macrozoobenthos in an estuarine ecosystem:carbon and nitrogen stable isotope analyses[J]. Estuarine, Coastal and Shelf Science, 2005, 64(2):316-322.
    林光辉. 稳定同位素生态学[M]. 北京:高等教育出版社, 2013:161-162. Lin Guanghui. Stable Isotope Ecology[M]. Beijing:Higher Education Press, 2013:161-162.
    鹿志创, 田甲申, 王召会, 等. 应用碳氮稳定同位素技术研究江豚(Neophocaena asiaeorientalis ssp. sunameri)食性[J]. 生态学报, 2016, 36(1):69-76. Lu Zhichuang, Tian Jiashen, Wang Zhaohui, et al. Using stable isotope technique to study feeding habits of the finless porpoise (Neophocaena asiaeorientalis ssp. sunameri)[J]. Acta Ecologica Sinica, 2016, 36(1):69-76.
    DeNiro M J, Epstein S. Mechanism of carbon isotope fractionation associated with lipid synthesis[J]. Science, 1977, 197(4300):261-263.
    Deniro M J, Epstein S. Influence of diet on the distribution of nitrogen isotopes in animals[J]. Geochimica et Cosmochimica Acta, 1981, 45(3):341-351.
    颜云榕. 北部湾主要鱼类摄食生态及食物关系的研究[D]. 青岛:中国科学院海洋研究所, 2010. Yan Yunrong. Feeding ecology and food relations of the main fishes in the Beibu Gulf, South China Sea[D]. Qingdao:Institute of Oceanology, Chinese Academic of Sciences, 2010.
    韩东燕. 胶州湾主要虾虎鱼类摄食生态的研究[D]. 青岛:中国海洋大学, 2013. Han Dongyan. Study on feeding ecology of dominate gobiid fishes in Jiaozhou Bay[D]. Qingdao:Ocean University of China, 2013.
    Kang K H, Park H J, Kim Y H, et al. Filtration and oxygen consumption rates on various growth stages of Scapharca broughtonii spat[J]. Aquaculture Research, 2008, 39(2):195-199.
    王兴林. 魁蚶筏式养殖技术[J]. 中国水产, 1997,3:31-32. Wang Xinglin. Raft culturing technique of Anadara broughtonii[J]. China Fisheries, 1997,3:31-32.
    MacDonald B A, Ward J E. Variation in food quality and particle selectivity in the sea scallop Placopecten magellanicus(Mollusca:Bivalvia)[J]. Marine Ecology Progress Series, 1994, 108:251-264.
    Bligh E G, Dyer W J. A rapid method of total lipid extraction and purification[J]. Canadian Journal of Biochemistry and Physiology, 1959, 37(8):911-917.
    Jacob U, Mintenbeck K, Brey T, et al. Stable isotope food web studies:a case for standardized sample treatment[J]. Marine Ecology Progress Series, 2005, 287:251-253.
    Phillips D L, Gregg J W. Source partitioning using stable isotopes:coping with too many sources[J]. Oecologia, 2003, 136(2):261-269.
    France R L, Peters R H. Ecosystem differences in the trophic enrichment of 13C in aquatic food webs[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1997, 54(6):1255-1258.
    Baeta A, Pinto R, Valiela I, et al. δ15N and δ13C in the Mondego estuary food web:seasonal variation in producers and consumers[J]. Marine Environmental Research, 2009, 67(3):109-116.
    Kanaya G, Kikuchi E. Spatial changes in a macrozoobenthic community along environmental gradients in a shallow brackish lagoon facing Sendai Bay, Japan[J]. Estuarine, Coastal and Shelf Science, 2008, 78(4):674-684.
    Moncreiff C A, Sullivan M J. Trophic importance of epiphytic algae in subtropical seagrass beds:evidence from multiple stable isotope analyses[J]. Marine Ecology Progress Series, 2001, 215:93-106.
    Vizzini S, Mazzola A. Seasonal variations in the stable carbon and nitrogen isotope ratios (13C/12C and 15N/14N) of primary producers and consumers in a western Mediterranean coastal lagoon[J]. Marine Biology, 2003, 142(5):1009-1018.
    郑新庆, 黄凌风, 林荣澄. 环境饵料丰度的季节变化对筼筜湖3种大型底栖动物食性的影响——来自稳定同位素的证据[J]. 海洋学报, 2014, 36(12):32-40. Zheng Xinqing, Huang Lingfeng, Lin Rongcheng. Seasonal shifts in food sources influence feeding habits of three macrozoobenthos species in the Yundang Lagoon:the evidence from stable isotope[J]. Haiyang Xuebao, 2014, 36(12):32-40.
    Hemminga M A, Mateo M A. Stable carbon isotopes in seagrasses:variability in ratios and use in ecological studies[J]. Marine Ecology Progress Series, 1996, 140:285-298.
    Hofmann M, Wolf-Gladrow D A, Takahashi T, et al. Stable carbon isotope distribution of particulate organic matter in the ocean:a model study[J]. Marine Chemistry, 2000, 72(2):131-150.
    Ben-David M, Flynn R W, Schell D M. Annual and seasonal changes in diets of martens:evidence from stable isotope analysis[J]. Oecologia, 1997, 111(2):280-291.
    Madurell T, Fanelli E, Cartes J E. Isotopic composition of carbon and nitrogen of suprabenthic fauna in the NW Balearic Islands (western Mediterranean)[J]. Journal of Marine Systems, 2008, 71(3):336-345.
    Bayne B L, Svensson S. Seasonal variability in feeding behaviour, metabolic rates and carbon and nitrogen balances in the Sydney oyster, Saccostrea glomerata(Gould)[J]. Journal of Experimental Marine Biology and Ecology, 2006, 332(1):12-26.
    Suh Y J, Shin K H. Size-related and seasonal diet of the manila clam (Ruditapes philippinarum), as determined using dual stable isotopes[J]. Estuarine, Coastal and Shelf Science, 2013, 135:94-105.
    Cabanellas-Reboredo M, Deudero S, Blanco A. Stable-isotope signatures (δ13C and δ15N) of different tissues of Pinna nobilis Linnaeus, 1758(Bivalvia):isotopic variations among tissues and between seasons[J]. Journal of Molluscan Studies, 2009, 75(4):343-349.
    Decottignies P, Beninger P G, Rincé Y, et al. Trophic interactions between two introduced suspension-feeders, Crepidula fornicata and Crassostrea gigas, are influenced by seasonal effects and qualitative selection capacity[J]. Journal of Experimental Marine Biology and Ecology, 2007, 342(2):231-241.
    Riera P. Trophic subsidies of Crassostrea gigas, Mytilus edulis and Crepidula fornicata in the Bay of Mont Saint Michel (France):a δ13C and δ15N investigation[J]. Estuarine, Coastal and Shelf Science, 2007, 72(1):33-41.
    Lopes-Lima M, Lima P, Hinzmann M, et al. Selective feeding by Anodonta cygnea(Linnaeus, 1771):the effects of seasonal changes and nutritional demands[J]. Limnologica-Ecology and Management of Inland Waters, 2014, 44:18-22.
    樊敏玲, 黄小平, 张大文, 等. 海南新村湾海草床主要鱼类及大型无脊椎动物的食源[J]. 生态学报, 2011, 31(1):31-38. Fan Minling, Huang Xiaoping, Zhang Dawen, et al. Food sources of fish and macro-invertebrates in a tropical seagrass bed at Xincun Bay, Southern China[J]. Acta Ecologica Sinica, 2011, 31(1):31-38.
    Zhao Liqiang, Yang Feng, Yan Xiwu. Stable isotopes and fatty acids as dietary tracers of intertidal bivalves[J]. Fisheries Science, 2013, 79(5):749-756.
    Zhao Liqiang, Yan Xiwu, Yang Feng. Food sources of the Manila clam Ruditapes philippinarum in intertidal areas:evidence from stable isotope analysis[J]. Chinese Journal of Oceanology and Limnology, 2013, 31(4):782-788.
    Navarro J M, Widdows J. Feeding physiology of Cerastoderma edule in response to a wide range of seston concentrations[J]. Marine Ecology Progress Series, 1997, 152:175-186.
    Navarro J M, Labarta U, Fernández-Reiriz M J, et al. Feeding behavior and differential absorption of biochemical components by the infaunal bivalve Mulinia edulis and the epibenthic Mytilus chilensis in response to changes in food regimes[J]. Journal of Experimental Marine Biology and Ecology, 2003, 287(1):13-35.
    周毅, 杨红生, 张福绥. 海水双壳贝类的生物沉积及其生态效应[J]. 海洋科学, 2003, 27(2):23-26. Zhou Yi, Yang Hongsheng, Zhang Fusui. Biodeposition by seawater bivalve mollusk[J]. Marine Sciences, 2003, 27(2):23-26.
    田伟, 徐兆礼. 广西白龙半岛邻近海域污损生物群落结构分析[J]. 海洋学报, 2015, 37(6):120-127. Tian Wei, Xu Zhaoli. The study on community structure of marine fouling in the waters off Bailong Peninsula, Guangxi[J]. Haiyang Xuebao, 2015, 37(6):120-127.
    Claereboudt M R, Bureau D, Côté J, et al. Fouling development and its effect on the growth of juvenile giant scallops (Placopecten magellanicus) in suspended culture[J]. Aquaculture, 1994, 121(4):327-342.
    Lodeiros C J M, Himmelman J H. Identification of factors affecting growth and survival of the tropical scallop Euvola(Pecten) ziczac in the Golfo de Cariaco, Venezuela[J]. Aquaculture, 2000, 182(1):91-114.
    张汉华, 梁超愉, 吴进锋, 等. 大鹏湾深水网箱养殖区的污损生物研究[J]. 中国水产科学, 2003, 10(5):414-418. Zhang Hanhua, Liang Chaoyu, Wu Jinfeng, et al. Fouling organism in marine cage culture area in Dapeng Bay, South China Sea[J]. Journal of Fishery Sciences of China, 2003, 10(5):414-418.
  • 加载中
计量
  • 文章访问数:  917
  • HTML全文浏览量:  13
  • PDF下载量:  742
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-12

目录

    /

    返回文章
    返回