留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海洋球石藻(Emiliania huxleyi)通用表达载体的构建与电转化

王薛婷 郭强强 蔡艺钦 陈志福 李健 刘静雯

王薛婷, 郭强强, 蔡艺钦, 陈志福, 李健, 刘静雯. 海洋球石藻(Emiliania huxleyi)通用表达载体的构建与电转化[J]. 海洋学报, 2016, 38(8): 103-114. doi: 10.3969/j.issn.0253-4193.2016.08.011
引用本文: 王薛婷, 郭强强, 蔡艺钦, 陈志福, 李健, 刘静雯. 海洋球石藻(Emiliania huxleyi)通用表达载体的构建与电转化[J]. 海洋学报, 2016, 38(8): 103-114. doi: 10.3969/j.issn.0253-4193.2016.08.011
Wang Xueting, Guo Qiangqiang, Cai Yiqin, Chen Zhifu, Li Jian, Liu Jingwen. Construction of expression vector and transformation via electroporation in coccolithophore Emiliania huxleyi[J]. Haiyang Xuebao, 2016, 38(8): 103-114. doi: 10.3969/j.issn.0253-4193.2016.08.011
Citation: Wang Xueting, Guo Qiangqiang, Cai Yiqin, Chen Zhifu, Li Jian, Liu Jingwen. Construction of expression vector and transformation via electroporation in coccolithophore Emiliania huxleyi[J]. Haiyang Xuebao, 2016, 38(8): 103-114. doi: 10.3969/j.issn.0253-4193.2016.08.011

海洋球石藻(Emiliania huxleyi)通用表达载体的构建与电转化

doi: 10.3969/j.issn.0253-4193.2016.08.011
基金项目: 国家自然科学基金(41576166);福建省科技重点项目(2015Y0039);厦门市南方海洋研究中心项目(14GZP71NF35)。

Construction of expression vector and transformation via electroporation in coccolithophore Emiliania huxleyi

  • 摘要: 海洋球石藻Emiliania huxleyi是一种全球广泛分布的真核浮游植物,该种不仅是海洋碳、硫循环和全球气候变化的重要指示物种,而且能够产生丰富的次级代谢生物活性物质,在生物技术领域也具有很好的应用前景。本文通过分析氨苄青霉素、卡那霉素、G418、氯霉素、链霉素、新生霉素及嘌呤霉素等7种常用抗生素对海洋球石藻生长的影响,确定G418可作为该藻阳性转化藻株的抗性筛选试剂,其对应的抗性基因neo则作为该藻表达载体构建中的抗性筛选标记。在此基础上克隆了绿色荧光蛋白基因gfp、抗性标记基因neoE. huxleyi BOF92内源性岩藻黄素-叶绿素a/c结合蛋白基因的启动子fcp,以pUC18为基础载体,构建了pUC18-fcp-gfp和pUC18-fcp-neo两个重组表达载体,以电转化方法共转化球石藻细胞并结合选择性固体培养基筛选,成功获得了被转化的球石藻细胞。海洋球石藻遗传转化系统的建立为进一步开展该种相关的基础生物学研究及其在生物技术领域的应用奠定了基础。
  • Bellou S, Baeshen M N, Elazzazy A M, et al. Microalgal lipids biochemistry and biotechnological perspectives[J]. Biotechnol Adv, 2014, 32(8):1476-1493.
    De Morais M G, Vaz Bda S, de Morais E G, et al. Biologically active metabolites synthesized by microalgae[J]. Biomed Res Int, 2015, 2015:835761.
    Qin S, Jiang P, Tseng C K. Molecular biotechnology of marine algae in China[J]. Hydrobiologia, 2004, 512(1/3):21-26.
    Niu Y F, Yang Z K, Zhang M H, et al. Transformation of diatom Phaeodactylum tricornutum by electroporation and establishment of inducible selection marker[J]. BioTech Rap Dis, 2012, doi: 10.2144/000113881.
    Radakovits R, Eduafo P M, Posewitz M C. Genetic engineering of fatty acid chain length in Phaeodactylum tricornutum[J]. Metab Eng, 2011, 13(1):89-95.
    Qin S, Lin H Z, Jiang P. Advances in genetic engineering of marine algae[J]. Biotechnol Adv, 2012, 30(6):1602-1613.
    Hlavova M, Turoczy Z, Bisova K. Improving microalgae for biotechnology-from genetics to synthetic biology[J]. Biotechnol Adv, 2015, 33(6):1194-1203.
    Xue J, Niu Y F, Huang T, et al. Genetic improvement of the microalga Phaeodactylum tricornutum for boosting neutral lipid accumulation[J]. Metab Eng, 2015, 27:1-9.
    Joassin P, Delille B, Soetaert K, et al. Carbon and nitrogen flows during a bloom of the coccolithophore Emiliania huxleyi:modelling a mesocosm experiment[J]. J Marine Syst, 2011, 85(3/4):71-85.
    Sayanova O, Haslam R P, Calerón M V, et al. Identification and functional characterisation of genes encoding the omega-3 polyunsaturated fatty acid biosynthetic pathway from the coccolithophore Emiliania huxleyi[J]. Phytochemistry, 2011, 72(7):594-600.
    Read B A, Kegel J, Klute M J, et al. Pan genome of the phytoplankton Emiliania underpins its global distribution[J]. Nature, 2013, 499(7457):209-213.
    Evans C, Pond D W, Wilson W H. Changes in Emiliania huxleyi fatty acid profiles during infection with E. huxleyi virus 86:physiological and ecological implications[J]. Aquat Microb Ecol, 2009, 55(3):219-228.
    Michaelson L V, Dunn T M, Napier J A. Viral trans-dominant manipulation of algal sphingolipids[J]. Trends Plant Sci, 2010, 15(12):651-655.
    Wilson W H, Schroeder D C, Allen M J, et al. Complete genome sequence and lytic phase transcription profile of a Coccolithovirus[J]. Science, 2005, 309(5737):1090-1092.
    Liu X H, Zheng T L, Cai Y X, et al. Cloning, expression and characterization of serine palmitoyltransferase (SPT)-like gene subunit (LCB2) from marine Emiliania huxleyi virus (Coccolithovirus)[J]. Acta Oceanologica Sinica, 2012, 31(6):127-138.
    Vardi A, Van Mooy B A S, Fredricks H F, et al. Viral glycosphingolipids induce lytic infection and cell death in marine phytoplankton[J]. Science, 2009, 326(5954):861-865.
    Laguna R, Romo J, Read B A, et al. Induction of phase variation events in the life cycle of the marine coccolithophorid Emiliania huxleyi[J]. Appl Environ Microbiol, 2001, 67(9):3824-3831.
    Sambrook J, Russell D W. 分子克隆实验指南[M]. 3版. 黄培堂, 译. 北京:科学出版社, 2002. Sambrook J, Russell D W. Molecular Cloning:A Laboratory Manual[M]. 3rd ed. Huang Peitang,Trans. Beijing:Science Press, 2002.
    Muto M, Fukuda Y, Nemoto M, et al. Establishment of a genetic transformation system for the marine pennate diatom Fistulifera sp. strain JPCC DA0580-a high triglyceride producer[J]. Mar Biotechnol, 2013, 15(1):48-55.
    余爱丽, 赵晋锋, 王高鸿, 等. 两个谷子CIPK基因在非生物逆境胁迫下的表达分析[J]. 作物学报, 2016, 42(2):295-302. Yu Aili, Zhao Jinfeng, Wang Gaohong, et al. Expression analysis of two CIPK genes under abiotic stress in foxtail millet[J]. Acta Agronomica Sinica, 2016, 42(2):295-302.
    郑晓瑜, 郭晋艳, 张毅, 等. 植物非生物胁迫诱导启动子顺式作用元件的研究方法[J]. 植物生理学报, 2011, 47(2):129-135. Zheng Xiaoyu, Guo Jinyan, Zhang Yi, et al. Research methods of cis-acting elements in plant abiotic stress inducible promoters[J]. Plant Physiology Journal, 2011, 47(2):129-135.
    Cheng S J, Wang Z Y, Hong M M. Rice bZIP protein, REB, interacts with GCN4 motif in promoter of Waxy gene[J]. Science in China Series C:Life Sciences, 2002, 45(4):352-360.
    张积森, 林清凡, 方静平, 等. 甘蔗SPS Ⅲ启动子区ATCT-motif和CAT-box元件的酵母单杂交报告载体构建[J]. 福建师范大学学报(自然科学版), 2013, 29(1):86-89. Zhang Jisen, Lin Qingfan, Fang Jingping, et al. Construction of yeast one-hybrid reporter vector for screening the binding proteins of ATCT-motif and CAT-box in SPS Ⅲ promoter[J]. Journal of Fujian Normal University (Natural Science Edition), 2013, 29(1):86-89.
    许家辉, 朱娜, 温超, 等. 龙眼LEAFY同源基因启动子的克隆与序列分析[J]. 果树学报, 2011, 28(4):689-693. Xu Jiahui, Zhu Na, Wen Chao, et al. Cloning and sequence analysis of LEAFY gene promoter from longan (Dimocarpus longan)[J]. Journal of Fruit Science, 2011, 28(4):689-693.
    耿德贵, 王义琴, 李文彬, 等. 杜氏盐藻基因工程选择标记的研究[J]. 生物技术, 2001, 11(5):1-3. Geng Degui, Wang Yiqin, Li Wenbin, et al. Study on selective marker of Dunaliella salina genetic engineering[J]. Biotechnology, 2001, 11(5):1-3.
    陈颖, 李文彬, 张利明, 等. 小球藻对5种常用基因工程抗生素的敏感性研究[J]. 海洋与湖沼, 1999, 30(5):500-505. Chen Ying, Li Wenbing, Zhang Liming, et al. Study on sensitivities of Chlorella Ellipsoidea to 5 antibiotics in genetic engineering[J]. Oceanologia et Limnologia Sinica, 1999, 30(5):500-505.
    曹军平, 费志清, 刘必谦, 等. 金藻基因工程选择标记的研究[J]. 海洋科学, 2001, 25(7):6-8. Cao Junping, Fei Zhiqing, Liu Biqian, et al. Study on the selectable marker for Dicrateria inornata gene engineering[J]. Marine Sciences, 2001, 25(7):6-8.
    Cerutti H, Johnson A M, Gillham N W, et al. A eubacterial gene conferring spectinomycin resistance on Chlamydomonas reinhardtii:integration into the nuclear genome and gene expression[J]. Genetics, 1997, 145(1):97-110.
    Kovar J L, Zhang J, Funke R P, et al. Molecular analysis of the acetolactate synthase gene of Chlamydomonas reinhardtii and development of a genetically engineered gene as a dominant selectable marker for genetic transformation[J]. Plant J, 2002, 29(1):109-117.
    Nelson J A, Savereide P B, Lefebvre P A. The CRY1 gene in Chlamydomonas reinhardtii:structure and use as a dominant selectable marker for nuclear transformation[J]. Mol Cell Biol, 1994, 14(6):4011-4019.
    Sizova I, Fuhrmann M, Hegemann P. A streptomyces rimosus aph VⅢ gene coding for a new type phosphotransferase provides stable antibiotic resistance to Chlamydomonas reinhardtii[J]. Gene, 2001, 277(1/2):221-229.
    Hallmann A, Rappel A. Genetic engineering of the multicellular green alga Volvox:a modified and multiplied bacterial antibiotic resistance gene as a dominant selectable marker[J]. Plant J, 1999, 17(1):99-109.
    Slavskaia L A, Lippmerier J C, Kroth P G, et al. Transformation of the diatom Phaeodactylum tricornutum(bacillariophyceae) with a variety of selectable marker and reporter genes[J]. J Phycol, 2000, 36(2):379-386.
    Apt K E, Kroth-Pancic P G, Grossman A R. Stable nuclear transformation of the diatom Phaeodactylum triconutum[J]. Mol Gen Genet, 1996, 252(5):572-579.
    郑国庭, 姜鹏, 秦松, 等. 三角褐指藻(Phaeodactylum tricornutum)通用转化载体的构建[J]. 生物学杂志, 2012, 29(4):8-11. Zheng Guoting, Jiang Peng, Qin Song, et al. Construction of a transformation vector for diatom Phaeodactylum tricornutum[J]. Journal of Biology, 2012, 29(4):8-11.
    Paludan K, Duch M, Jørgensen P, et al. Graduated resistance to G418 leads to differential selection of cultured mammalian cells expressing the neo gene[J]. Gene, 1989, 85(2):421-426.
    Miyagawa A, Okami T, Kira N, et al. Research note:high efficiency transformation of the diatom Phaeodactylum tricornutum with a promoter from the diatom Cylindrotheca fusiformis[J]. Phycol Res, 2009, 57(2):142-146.
    Watanabe S, Ohnuma M, Sato J, et al. Utility of a GFP reporter system in the red alga Cyanidioschyzon merolae[J]. J Gen Appl Microbiol, 2011, 57(1):69-72.
    Li F C, Qin S, Jiang P, et al. The integrative expression of GUS gene driven by FCP promoter in the seaweed Laminaria japonica(Phaeophyta)[J]. J Appl Phycol, 2009, 21(3):287-293.
    Miyagawa-Yamaguchi A, Okami T, Kira N, et al. Stable nuclear transformation of the diatom Chaetoceros sp.[J]. Phycol Res, 2011, 59(2):113-119.
    Ladygin V G. Efficient transformation of mutant cells of Chlamydomonas reinhardtii by electroporation[J]. Process Biochem, 2004, 39(11):1685-1691.
    Falciatore A, Casotti R, Leblanc C, et al. Transformation of nonselectable reporter genes in marine diatoms[J]. Mar Biotechnol, 1999, 1(3):239-251.
  • 加载中
计量
  • 文章访问数:  1053
  • HTML全文浏览量:  29
  • PDF下载量:  711
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-11
  • 修回日期:  2016-03-03

目录

    /

    返回文章
    返回