留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海洋生物泵研究进展

孙军 李晓倩 陈建芳 郭术津

孙军, 李晓倩, 陈建芳, 郭术津. 海洋生物泵研究进展[J]. 海洋学报, 2016, 38(4): 1-21. doi: 10.3969/j.issn.0253-4193.2016.04.001
引用本文: 孙军, 李晓倩, 陈建芳, 郭术津. 海洋生物泵研究进展[J]. 海洋学报, 2016, 38(4): 1-21. doi: 10.3969/j.issn.0253-4193.2016.04.001
Sun Jun, Li Xiaoqian, Chen Jianfang, Guo Shujin. Progress in oceanic biological pump[J]. Haiyang Xuebao, 2016, 38(4): 1-21. doi: 10.3969/j.issn.0253-4193.2016.04.001
Citation: Sun Jun, Li Xiaoqian, Chen Jianfang, Guo Shujin. Progress in oceanic biological pump[J]. Haiyang Xuebao, 2016, 38(4): 1-21. doi: 10.3969/j.issn.0253-4193.2016.04.001

海洋生物泵研究进展

doi: 10.3969/j.issn.0253-4193.2016.04.001
基金项目: 国家重点基础研究发展计划(2015CB954002);全球变化与海气相互作用专项(GASI-03-01-03-03);教育部新世纪优秀人才计划(NCET-12-1065);国家自然科学基金(91128212,41176136,41276124,41306118)。

Progress in oceanic biological pump

  • 摘要: 海洋生物泵是以一系列海洋生物为介质将大气中的碳输运到海洋深层的过程,是海洋碳循环的重要组成部分以及未来的研究重点。本文系统地描述了海洋生物泵碳汇几个主要阶段:浮游植物沉降,浮游动物粪球颗粒沉降,透明胞外聚合颗粒物(TEP)沉降和海雪沉降以及碳酸盐反向泵过程。同时,本文对南海生物泵的研究进展进行简要介绍,服务于中国海碳循环。
  • Falkowski P, Scholes R, Boyle E, et al. The global carbon cycle:a test of our knowledge of earth as a system[J]. Science, 2000, 290(5490):291-296.
    Sarmiento J L, Gruber N. Ocean Biogeochemical Dynamics[M]. Cambridge Univ Press, 2006, 503.
    Hansell D A, Carlson C A. Deep-ocean gradients in the concentration of dissolved organic carbon[J]. Nature, 1998, 395(6699):263-266.
    Eglinton T, Repeta D. Organic matter in the contemporary ocean[M]//Treatise on Geochemistry. Holland H D, Turekian K K. The Oceans and Marine Geochemistry, Elsevier Pergamon, Amsterdam, 2004, 6, 145-180.
    孙军. 海洋浮游植物与生物碳汇[J]. 生态学报, 2011, 31(18):5372-5378. Sun Jun. Marine phytoplankton and biological carbon sink[J]. Acta Ecologica Sinica, 2011, 31(18):5372-5378.
    Passow U. Transparent exopolymer particles (TEP) in aquatic environments[J]. Progress in Oceanography, 2002, 55(3/4):287-333.
    Reynolds C S, Jaworski G H M, Cmiech H A, et al. On the annual cycle of the blue-green alga Microcystis aeruginosa Kutz. emend. Elenkin[J]. Philosophical Transactions of the Royal Society of London B:Biological Sciences, 1981, 293(1068):419-477.
    Stokes G G. On the effect of the internal friction of fluids on the motion of pendulums[M]. Cambridge:Pitt Press, 1851.
    Reynolds C S. The ecology of phytoplankton[M]. Cambridge:Cambridge University Press, 2006.
    Peperzak L, Colijn F, Koeman R, et al. Phytoplankton sinking rates in the Rhine region of freshwater influence[J]. Journal of Plankton Research, 2003, 25(4):365-383.
    Gross F, Zeuthen E. The buoyancy of plankton diatoms:a problem of cell physiology[J]. Proceedings of the Royal Society of London B:Biological Sciences, 1948, 135(880):382-389.
    Anderson L W J, Sweeney B M. Role of inorganic ions in controlling sedimentation rate of a marine centric diatom ditylum brightwell[J]. Journal of Phycology, 1978, 14(2):204-214.
    Kahn N, Swift E. Positive buoyancy through ionic control in the nonmotile marine dinoflagellate Pyrocystis noctiluca Murray ex Schuett[J]. Limnology and Oceanography, 1978, 23(4):649-658.
    Malins D C, Sargent J R. Biochemical and biophysical perspectives in marine biology[M]. New York:Academic Press, 1974.
    Smayda T J. The suspension and sinking of phytoplankton in the sea[J]. Oceanography and Marine Biology, 1970, 8:353-414.
    Fogg G E, Thake B. Algal cultures and phytoplankton ecology[M]. Wisconsin:University of Wisconsin Press, 1987.
    Belcher J H. Notes on the physiology of Botryococcus braunii Kützing[J]. Archives of Microbiology, 1968, 61(4):335-346.
    Reynolds C S. The ecology of freshwater phytoplankton[M]. Cambridge:Cambridge University Press, 1984.
    Dinsdale M T, Walsby A E. The interrelations of cell turgor pressure, gas-vacuolation, and buoyancy in a blue-green alga[J]. Journal of Experimental Botany, 1972, 23(2):561-570.
    Thomas R H, Walsby A E. Buoyancy regulation in a strain of Microcystis[J]. Microbiology, 1985, 131(4):799-809.
    Utkilen H C, Oliver R L, Walsby A E. Buoyancy regulation in a red Oscillatoria unable to collapse gas vacuoles by turgor pressure[J]. Archiv für Hydrobiologie, 1985, 102(3):319-329.
    Walsby A E, Kinsman R, Ibelings B W, et al. Highly buoyant colonies of the cyanobacterium Anabaena-Lemmermannii form persistent surface waterblooms[J]. Archiv für Hydrobiologie, 1991, 121(3):261-280.
    Walsby A E. Gas vesicles[J]. Microbiological Reviews, 1994, 58(1):94-144.
    Reynolds C S. Cyanobacterial water-blooms[J]. Advances in Botanical Research, 1987, 13:67-143.
    Kromkamp J C, Mur L R. Buoyant density changes in the cyanobacterium Microcystis aeruginosa due to changes in the cellular carbohydrate content[J]. FEMS Microbiology Letters, 1984, 25(1):105-109.
    Walsby A E. The properties and buoyancy-providing role of gas vacuoles in Trichodesmium Ehrenberg[J]. British Phycological Journal, 1978, 13(2):103-116.
    Pitcher G C, Walker D R, Mitchel-Innes B A. Phytoplankton sinking rate dynamics in the southern Benguela upwelling system[J]. Marine Ecology Progress Series, 1989, 55(2/3):261-269.
    Talling J F. Underwater light climate as a controlling factor in the production ecology of freshwater phytoplankton[C]//Proceedings of the International Association of Theoretical and Applied Limnology Symposium, Factors Regul Wax Wane Algal Pop. 1971.
    Pollingher U. Freshwater armored dinoflagellates:growth, reproduction strategies, and population dynamics[M]//Sandgren C. Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambridge:Cambridge University Press, 1988:134-174.
    Smayda T J. Turbulence, watermass stratification and harmful algal blooms:an alternative view and frontal zones as "pelagic seed banks"[J]. Harmful Algae, 2002, 1(1):95-112.
    Sommer U. The periodicity of phytoplankton in Lake Constance (Bodensee) in comparison to other deep lakes of central Europe[J]. Hydrobiologia, 1986, 138(1):1-7.
    Bienfang P, Laws E, Johnson W. Phytoplankton sinking rate determination:technical and theoretical aspects, an improved methodology[J]. Journal of Experimental Marine Biology and Ecology, 1977, 30(3):283-300.
    Riley G A, Stommel H M, Bumpus D F. Quantitative ecology of the plankton of the western North Atlantic[M]. Bingham:Bingham Oceanographic Laboratory, 1949.
    Smayda T J, Boleyn B J. Experimental observations on the flotation of marine diatoms. Ⅰ. Thalassiosira nana, Thalassiosira rotula and Nitzschia seriata[J]. Limnology and Oceanography, 1965, 10(4):499-509.
    Smayda T J, Boleyn B J. Experimental observations on the flotation of marine diatoms. Ⅱ. Skeletonema costatum and Rhizosolenia setigera[J]. Limnology and Oceanography, 1966, 11(1):18-34.
    Smayda T J, Boleyn B J. Experimental observations on the flotation of marine diatoms. Ⅲ. Bacteriastrum hyalinum and Chaetoceros lauderi[J]. Limnology and Oceanography, 1966, 11(1):35-43.
    Steele J H, Yentsch C S. The vertical distribution of chlorophyll[J]. Journal of the Marine Biological Association of the United Kingdom, 1960, 39(2):217-226.
    Eppley R W, Holmes R W, Strickland J D H. Sinking rates of marine phytoplankton measured with a fluorometer[J]. Journal of Experimental Marine Biology and Ecology, 1967, 1(2):191-208.
    Titman D. A fluorometric technique for measuring sinking rates of freshwater phytoplankton[J]. Limnology and Oceanography, 1975, 20(5):869-875.
    Bienfang P K. SETCOL-a technologically simple and reliable method for measuring phytoplankton sinking rates[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1981, 38(10):1289-1294.
    Lännergren C. Buoyancy of natural populations of marine phytoplankton[J]. Marine Biology, 1979, 54(1):1-10.
    Waite A M, Nodder S D. The effect of in situ iron addition on the sinking rates and export flux of Southern Ocean diatoms[J]. Deep-Sea Research Part Ⅱ:Topical Studies in Oceanography, 2001, 48(11/12):2635-2654.
    Mei Zhiping, Legendre L, Gratton Y, et al. Phytoplankton production in the North Water Polynya:size-fractions and carbon fluxes, April to July 1998[J]. Marine Ecology Progress Series, 2003, 256:13-27.
    O'brien K R, Waite A M, Alexander B L, et al. Particle tracking in a salinity gradient:A method for measuring sinking rate of individual phytoplankton in the laboratory[J]. Limnology and Oceanography:Methods, 2006, 4(9):329-335.
    Walsby A E, Holland D P. Sinking velocities of phytoplankton measured on a stable density gradient by laser scanning[J]. Journal of the Royal Society Interface, 2006, 3(8):429-439.
    Bach L T, Riebesell U, Sett S, et al. An approach for particle sinking velocity measurements in the 3-400 μm size range and considerations on the effect of temperature on sinking rates[J]. Marine Biology, 2012, 159(8):1853-1864.
    Passow U. Species-specific sedimentation and sinking velocities of diatoms[J]. Marine Biology, 1991, 108(3):449-455.
    Muggli D L, Lecourt M, Harrison P J. Effects of iron and nitrogen source on the sinking rate, physiology and metal composition of an oceanic diatom from the subarctic Pacific[J]. Marine Ecology Progress Series, 1996, 132(1):215-227.
    Anderson L, Sweeney B. Diel changes in sedimentation characteristics of Ditylum brightwelli:Changes in cellular lipid and effects of respiratory inhibitors and ion-transport modifiers[J]. Limnol Oceanogr, 1977, 22(3):539-552.
    Bienfang P K, Harrison P J, Quarmby L M. Sinking rate response to depletion of nitrate, phosphate and silicate in four marine diatoms[J]. Marine Biology, 1982, 67(3):295-302.
    Culver M E, Smith W O. Effects of environmental variation on sinking rates of marine phytoplankton[J]. Journal of Phycology, 1989, 25(2):262-270.
    Bienfang P K. Size structure and sinking rates of various microparticulate constituents in oligotrophic Hawaiian waters[J]. Marine Ecology Progress Series, 1985, 23(2):143-151.
    Johnson T O, Smith W O. Sinking rates of phytoplankton assemblages in the weddell sea marginal ice-zone[J]. Marine Ecology Progress Series, 1986, 33(2):131-137.
    Riebesell U. Comparison of sinking and sedimentation rate measurements in a diatom winter/spring bloom[J]. Marine Ecology Progress Series, 1989, 54(1/2):109-119.
    Waite A, Bienfang P K, Harrison P J. Spring bloom sedimentation in a subarctic ecosystem. Ⅰ. Nutrient sensitivity[J]. Marine Biology, 1992, 114(1):119-129.
    Titman D, Kilham P. Sinking in freshwater phytoplankton:some ecological implications of cell nutrient status and physical mixing processes[J]. Limnology and Oceanography, 1976, 21(3):409-417.
    Mcnown J S, Malaika J. Effects of particle shape on settling velocity at low Reynolds numbers[J]. Eos, Transactions American Geophysical Union, 1950, 31(1):74-82.
    Hutchinson G E. A Treatise on Limnology. Ⅱ. Introduction to lake biology and their limnoplankton[M]. New York:Wiley, 1967.
    Komar P D. Settling velocities of circular cylinders at low Reynolds numbers[J]. The Journal of Geology, 1980, 88(3):327-336.
    Davey M C, Walsby A E. The form resistance of sinking algal chains[J]. British Phycological Journal, 1985, 20(3):243-248.
    Padisák J, Soróczki-Pintér É, Rezner Z. Sinking properties of some phytoplankton shapes and the relation of form resistance to morphological diversity of plankton-an experimental study[J]. Hydrobiologia, 2003, 500(1/3):243-257.
    Holland D P. Sinking rates of phytoplankton filaments orientated at different angles:theory and physical model[J]. Journal of Plankton Research, 2010, 32(9):1327-1336.
    Morris I. The physiological ecology of phytoplankton[M]. Oxford:Blackwell, 1980.
    Lande R, Wood A M. Suspension times of particles in the upper ocean[J]. Deep-Sea Research Part A Oceanographic Research Papers, 1987, 34(1):61-72.
    Ruiz J, García C M, Rodríguez J. Sedimentation loss of phytoplankton cells from the mixed layer:effects of turbulence levels[J]. Journal of Plankton Research, 1996, 18(9):1727-1734.
    Ruiz J, Macías D, Peters F. Turbulence increases the average settling velocity of phytoplankton cells[J]. Proceedings of the National academy of Sciences of the United States of America, 2004, 101(51):17720-17724.
    Huisman J, Sommeijer B. Maximal sustainable sinking velocity of phytoplankton[J]. Marine Ecology Progress Series, 2002, 244:39-48.
    Maxey M R. The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields[J]. Journal of Fluid Mechanics, 1987, 174:441-465.
    Turner J T, Ferrante J G. Zooplankton fecal pellets in aquatic ecosystems[J]. BioScience, 1979, 29(11):670-677.
    张武昌, 张芳, 王克. 海洋浮游动物粪便通量[J]. 地球科学进展, 2001, 16(1):113-119. Zhang Wuchang, Zhang Fang, Wang Ke. Marine zooplankton fecal pellets flux[J]. Advances in Earth Science, 2001, 16(1):113-119.
    Lane P V Z, Smith S L, Urban J L, et al. Carbon flux and recycling associated with zooplanktonic fecal pellets on the shelf of the Middle Atlantic Bight[J]. Deep-Sea Research Part Ⅱ:Topical Studies in Oceanography, 1994, 41(2/3):437-457.
    Møller E F, Borg C M A, Jónasdóttir S H, et al. Production and fate of copepod fecal pellets across the Southern Indian Ocean[J]. Marine Biology, 2011, 158(3):677-688.
    Riser C W, Wassmann P, Olli K, et al. Production, retention and export of zooplankton faecal pellets on and off the Iberian shelf, north-west Spain[J]. Progress in Oceanography, 2001, 51(2/4):423-441.
    Riser C W, Wassmann P, Olli K, et al. Seasonal variation in production, retention and export of zooplankton faecal pellets in the marginal ice zone and central Barents Sea[J]. Journal of Marine Systems, 2002, 38(1/2):175-188.
    Wassmann P, Hansen L, Andreassen I J, et al. Distribution and sedimentation of faecal on the Nordvestbanken shelf, northern Norway, in 1994[J]. Sarsia, 1999, 84(3/4):239-253.
    Raymont J E G, Gross F. XX.On the feeding and breeding of Calanus finmarchicus under laboratory conditions[J]. Proceedings of the Royal Society of Edinburgh Section B Biology, 1942, 61(3):267-287.
    Marshall S M, Orr A P. On the biology of Calanus finmarchicus VIII. Food uptake, assimilation and excretion in adult and stage V Calanus[J]. Journal of the Marine Biological Association of the United Kingdom, 1955, 34(3):495-529.
    Paffenhöfer G A, Knowles S C. Ecological implications of fecal pellet size, production and consumption by copepods[J]. J Mar Res, 1979, 37(1):35-49.
    Butler M, Dam H G. Production rates and characteristics of fecal pellets of the copepod Acartia tonsa under simulated phytoplankton bloom conditions:implications for vertical fluxes[J]. Marine Ecology Progress Series, 1994, 114(1/2):81-91.
    Corner E D S, Head R N, Kilvington C C. On the nutrition and metabolism of zooplankton. VIII. The grazing of Biddulphia cells by Calanus helgolandicus[J]. Journal of the Marine Biological Association of the United Kingdom, 1972, 52(4):847-861.
    Ayukai T, Nishizawa S. Defecation rate as a possible measure of ingestion rate of Calanus pacificus pacificus(Copepoda:Calanoida)[J]. Bulletin of the Plankton Society of Japan, 1986, 33(1):3-10.
    Gamble J C. Copepod grazing during a declining spring phytoplankton bloom in the northern North Sea[J]. Marine Biology, 1978, 49(4):303-315.
    Poulsen L K, Kiørboe T. Vertical flux and degradation rates of copepod fecal pellets in a zooplankton community dominated by small copepods[J]. Marine Ecology Progress Series, 2006, 323:195-204.
    Frangoulis C, Belkhiria S, Goffart A, et al. Dynamics of copepod faecal pellets in relation to a Phaeocystis dominated phytoplankton bloom:characteristics, production and flux[J]. Journal of Plankton Research, 2001, 23(1):75-88.
    Juul-Pedersen T, Nielsen T G, Michel C, et al. Sedimentation following the spring bloom in Disko Bay, West Greenland, with special emphasis on the role of copepods[J]. Marine Ecology Progress Series, 2006, 314:239-255.
    Riser C W, Reigstad M, Wassmann P, et al. Export or retention? Copepod abundance, faecal pellet production and vertical flux in the marginal ice zone through snap shots from the northern Barents Sea[J]. Polar Biology, 2007, 30(6):719-730.
    Beaumont K L, Plummer A J, Hosie G W, et al. Production and fate of faecal pellets during summer in an East Antarctic fjord[J]. Hydrobiologia, 2001, 453-454(1):55-65.
    Urban-Rich J L. Latitudinal variations in the contribution by copepod fecal pellets to organic carbon and amino acid flux[M]. College Park, Md.:University of Maryland, 1997.
    Blaxter J H, Douglas B, Tyler P A, et al. The biology of calanoid copepods:the biology of calanoid copepods[M]. New York:Academic Press, 1998.
    Smayda T J. Normal and accelerated sinking of phytoplankton in the sea[J]. Marine Geology, 1971, 11(2):105-122.
    Turner J T. Sinking rates of fecal pellets from the marine copepod Pontella meadii[J]. Marine Biology, 1977, 40(3):249-259.
    Yoon W, Kim S, Han K. Morphology and sinking velocities of fecal pellets of copepod, molluscan, euphausiid, and salp taxa in the northeastern tropical Atlantic[J]. Marine Biology, 2001, 139(5):923-928.
    Fowler S W, Small L F. Sinking rates of euphausiid fecal pellets[J]. Limnology and Oceanography, 1972, 17(2):293-296.
    Bruland K W, Silver M W. Sinking rates of fecal pellets from gelatinous zooplankton (salps, pteropods, doliolids)[J]. Marine Biology, 1981, 63(3):295-300.
    Deibel D. Still-water sinking velocity of fecal material from the pelagic tunicate Dolioletta gegenbauri[J]. Marine Ecology Progress Series, 1990, 62:55-60.
    Gorsky G, Fisher N S, Fowler S W. Biogenic debris from the pelagic tunicate, Oikopleura dioica, and its role in the vertical transport of a transuranium element[J]. Estuarine, Coastal and Shelf Science, 1984, 18(1):13-23.
    Dilling L, Alldredge A L. Can chaetognath fecal pellets contribute significantly to carbon flux?[J]. Marine Ecology Progress Series, 1993, 92:51-58.
    Madin L P. Production, composition and sedimentation of salp fecal pellets in oceanic waters[J]. Marine Biology, 1982, 67(1):39-45.
    Small L F, Fowler S W, Vnlü M Y. Sinking rates of natural copepod fecal pellets[J]. Marine Biology, 1979, 51(3):233-241.
    Bienfang P K. Herbivore diet affects fecal pellet settling[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1980, 37(9):1352-1357.
    Dagg M J, Walser Jr W E. The effect of food concentration on fecal pellet size in marine copepods[J]. Limnology and Oceanography, 1986, 31(5):1066-1071.
    Tsuda A, Nemoto T. The effect of food concentration on the faecal pellet size of the marine copepod Pseudocalanus newmani Frost[J]. Bulletin of the Plankton Society of Japan Hiroshima, 1990, 37(1):83-90.
    Bishop J K B, Edmond J M, Ketten D R, et al. The chemistry, biology, and vertical flux of particulate matter from the upper 400 m of the equatorial Atlantic Ocean[J]. Deep-Sea Research, 1977, 24(6):511-548.
    Urrère M A, Knauer G A. Zooplankton fecal pellet fluxes and vertical transport of particulate organic material in the pelagic environment[J]. Journal of Plankton Research, 1981, 3(3):369-387.
    Fowler S W, Small L F, Larosa J L. Seasonal particulate carbon flux in the coastal northwestern mediterranean-sea, and the role of zooplankton fecal matter[J]. Oceanologica Acta, 1991, 14(1):77-85.
    Graf G. Benthic-pelagic coupling in a deep-sea benthic community[J]. Nature, 1989, 341(6241):437-439.
    Pilskaln C H, Honjo S. The fecal pellet fraction of biogeochemical particle fluxes to the deep sea[J]. Global Biogeochemical Cycles, 1987, 1(1):31-48.
    Maita Y, Odate T, Yanada M. Vertical transport of organic carbon by sinking particles and the role of zoo-and phytogenic matters in neritic waters[J]. Bulletin of the Faculty of Fisheries Hokkaido University, 1988, 39(4):265-274.
    Asper V L. Measuring the flux and sinking speed of marine snow aggregates[J]. Deep-Sea Research Part A Oceanographic Research Papers, 1987, 34(1):1-17.
    Taylor G T. Variability in the vertical flux of microorganisms and biogenic material in the epipelagic zone of a North Pacific central gyre station[J]. Deep Sea Research Part A Oceanographic Research Papers, 1989, 36(9):1287-1308.
    Roman M R, Gauzens A L. Copepod grazing in the equatorial Pacific[J]. Limnology and Oceanography, 1997, 42(4):623-634.
    Roy S, Silverberg N, Romero N, et al. Importance of mesozooplankton feeding for the downward flux of biogenic carbon in the Gulf of St. Lawrence (Canada)[J]. Deep-Sea Research Part Ⅱ:Topical Studies in Oceanography, 2000, 47(3/4):519-544.
    Small L F, Fowler S W, Moore S A, et al. Dissolved and fecal pellet carbon and nitrogen release by zooplankton in tropical waters[J]. Deep Sea Research Part A Oceanographic Research Papers, 1983, 30(12):1199-1220.
    Wassmann P, Ypma J E, Tselepides A. Vertical flux of faecal pellets and microplankton on the shelf of the oligotrophic Cretan Sea (NE Mediterranean Sea)[J]. Progress in Oceanography, 2000, 46(2/4):241-258.
    Lapoussière A, Michel C, Gosselin M, et al. Spatial variability in organic material sinking export in the Hudson Bay system, Canada, during fall[J]. Continental Shelf Research, 2009, 29(9):1276-1288.
    Juul-Pedersen T, Michel C, Gosselin M. Sinking export of particulate organic material from the euphotic zone in the eastern Beaufort Sea[J]. Marine Ecology Progress Series, 2010, 410:55-70.
    Gleiber M R. Time series of vertical flux of zooplankton fecal pellets on the continental shelf of the western Antarctic Peninsula[D]. Williamsburg:The College of William and Mary, 2010.
    Ayukai T, Hattori H. Production and downward flux of zooplankton fecal pellets in the anticyclonic gyre off Shikoku, Japan[J]. Oceanologica Acta, 1992, 15(2):163-172.
    Passow U, Shipe R F, Murray A, et al. The origin of transparent exopolymer particles (TEP) and their role in the sedimentation of particulate matter[J]. Continental Shelf Research, 2001, 21(4):327-346.
    Olli K, Wassmann P, Reigstad M, et al. The fate of production in the central Arctic Ocean-top-down regulation by zooplankton expatriates?[J]. Progress in Oceanography, 2007, 72(1):84-113.
    Goldthwait S A, Steinberg D K. Elevated biomass of mesozooplankton and enhanced fecal pellet flux in cyclonic and mode-water eddies in the Sargasso Sea[J]. Deep-Sea Research Part Ⅱ:Topical Studies in Oceanography, 2008, 55(10/13):1360-1377.
    Tamelander T, Aubert A, Wexels Riser C. Export stoichiometry and contribution of copepod faecal pellets to vertical flux of particulate organic carbon, nitrogen and phosphorus[J]. Marine Ecology Progress Series, 2012, 459:17-28.
    Carroll M L, Miquel J C, Fowler S W. Seasonal patterns and depth-specific trends of zooplankton fecal pellet fluxes in the Northwestern Mediterranean Sea[J]. Deep-Sea Research Part Ⅰ:Oceanographic Research Papers, 1998, 45(8):1303-1318.
    Miquel J C, Fowler S W, La Rosa J, et al. Dynamics of the downward flux of particles and carbon in the open northwestern Mediterranean Sea[J]. Deep-Sea Research Part Ⅰ:Oceanographic Research Papers, 1994, 41(2):243-261.
    Gowing M M, Garrison D L, Kunze H B, et al. Biological components of Ross Sea short-term particle fluxes in the austral summer of 1995-1996[J]. Deep-Sea Research Part Ⅰ:Oceanographic Research Papers, 2001, 48(12):2645-2671.
    Manno C, Tirelli V, Accornero A, et al. Importance of the contribution of Limacina helicina faecal pellets to the carbon pump in Terra Nova Bay (Antarctica)[J]. Journal of Plankton Research, 2010, 32(2):145-152.
    Lalande C, Bauerfeind E, Nöthig E M, et al. Impact of a warm anomaly on export fluxes of biogenic matter in the eastern Fram Strait[J]. Progress in Oceanography, 2013, 109:70-77.
    Turner J T. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean's biological pump[J]. Progress in Oceanography, 2015, 130:205-248.
    Turner J T. Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms[J]. Aquatic Microbial Ecology, 2002, 27(1):57-102.
    Svensen C, Riser C W, Reigstad M, et al. Degradation of copepod faecal pellets in the upper layer:Role of microbial community and Calanus finmarchicus[J]. Marine Ecology Progress Series, 2012, 462:39-49.
    Gowing M M, Wishner K F. Trophic relationships of deep-sea calanoid copepods from the benthic boundary layer of the Santa Catalina Basin, California[J]. Deep-Sea Research Part A Oceanographic Research Papers, 1986, 33(7):939-961.
    Green E P, Harris R P, Duncan A. The production and ingestion of faecal pellets by nauplii of marine calanoid copepods[J]. Journal of Plankton Research, 1992, 14(12):1631-1643.
    Lampitt R S, Noji T, Von Bodungen B. What happens to zooplankton faecal pellets? Implications for material flux[J]. Marine Biology, 1990, 104(1):15-23.
    González H E, Smetacek V. The possible role of the cyclopoid copepod Oithona in retarding vertical flux of zooplankton faecal material[J]. Marine Ecology Progress Series, 1994, 113(3):233-246.
    Svensen C, Nejstgaard J C. Is sedimentation of copepod faecal pellets determined by cyclopoids? Evidence from enclosed ecosystems[J]. Journal of Plankton Research, 2003, 25(8):917-926.
    Noji T T, Estep K W, Macintyre F, et al. Image analysis of faecal material grazed upon by three species of copepods:evidence for coprorhexy, coprophagy and coprochaly[J]. Journal of the Marine Biological Association of the United Kingdom, 1991, 71(2):465-480.
    Alldredge A L, Passow U, Logan B E. The abundance and significance of a class of large, transparent organic particles in the ocean[J]. Deep-Sea Research Part Ⅰ:Oceanographic Research Papers, 1993, 40(6):1131-1140.
    孙军. 海洋中的凝集网与透明胞外聚合颗粒物[J]. 生态学报, 2005, 25(5):1191-1198. Sun Jun. Transparent Exopolymer Particles (TEP) and aggregation web in marine environments[J]. Acta Ecologica Sinica, 2005, 25(5):1191-1198.
    Engel A. Carbon and nitrogen content of transparent exopolymer particles (TEP) in relation to their Alcian Blue adsorption[J]. Mar Ecol Prog Ser, 2001, 219(8):1-10.
    Mari X, Kiørboe T. Abundance, size distribution and bacterial colonization of transparent exopolymeric particles (TEP) during spring in the Kattegat[J]. Journal of Plankton Research, 1996, 18(6):969-986.
    Hong Y, Smith W O, White A M. Studies on transparent exopolymer particles (TEP) produced in the ross sea (Antarctica) and by Phaeocystis Antarctica (Prymnesiophyceae)[J]. Journal of Phycology, 1997, 33(3):368-376.
    Alldredge A L, Passow U, Haddock H D. The characteristics and transparent exopolymer particle (TEP) content of marine snow formed from thecate dinoflagellates[J]. Journal of Plankton Research, 1998, 20(3):393-406.
    Berman T, Viner-Mozzini Y. Abundance and characteristics of polysaccharide and proteinaceous particles in Lake Kinneret[J]. Aquatic Microbial Ecology, 2001, 24(3):255-264.
    Grossart H P, Simon M, Logan B E. Formation of macroscopic organic aggregates (lake snow) in a large lake:the significance of transparent exopolymer particles, plankton, and zooplankton[J]. Limnology and Oceanography, 1997, 42(8):1651-1659.
    Riley G A. Organic aggregates in seawater and the dynamics of their formation and utilization[J]. Limnology and Oceanography, 1963, 8(4):372-381.
    Johnson B D, Cooke R C. Organic particle and aggregate formation resulting from the dissolution of bubbles in seawater[J]. Limnology and Oceanography, 1980, 25(4):653-661.
    Leppard G G, West M M, Flannigan D T, et al. A classification scheme for marine organic colloids in the Adriatic Sea:colloid speciation by transmission electron microscopy[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1997, 54(10):2334-2349.
    Leppard G G. The characterization of algal and microbial mucilages and their aggregates in aquatic ecosystems[J]. Science of the Total Environment, 1995, 165(1/3):103-131.
    Leppard G G, Heissenberger A, Herndl G J. Ultrastructure of marine snow. I. Transmission electron microscopy methodology[J]. Marine Ecology Progress Series, 1996, 135:289-298.
    Leppard G G, Massalski A, Lean D R S. Electron-opaque microscopic fibrils in lakes:their demonstration, their biological derivation and their potential significance in the redistribution of cations[J]. Protoplasma, 1977, 92(3/4):289-309.
    Stoderegger K, Herndl G J. Production and release of bacterial capsular material and its subsequent utilization by marine bacterioplankton[J]. Limnology and Oceanography, 1998, 43(5):877-884.
    Baldi F, Minacci A, Saliot A, et al. Cell lysis and release of particulate polysaccharides in extensive marine mucilage assessed by lipid biomarkers and molecular probes[J]. Mar Ecol Prog Ser, 1997, 153:45-57.
    Shibata A, Kogure K, Koike I, et al. Formation of submicron colloidal particles from marine bacteria by viral infection[J]. Marine Ecology Progress Series, 1997, 155:303-307.
    Wells M L, Goldberg E D. Colloid aggregation in seawater[J]. Marine Chemistry, 1993, 41(4):353-358.
    Kepkay P E. Particle aggregation and the biological reactivity of colloids[J]. Marine Ecology Progress Series, 1994, 109:293-304.
    Chin W C, Orellana M V, Verdugo P. Spontaneous assembly of marine dissolved organic matter into polymer gels[J]. Nature, 1998, 391(6667):568-572.
    Passow U. Distribution, size, and bacterial colonization of transparent exopolymer particles (TEP) in the ocean[J]. Mar Ecol Prog Ser, 1994, 113:185-198.
    Passow U, Alldredge A L. Aggregation of a diatom bloom in a mesocosm:The role of transparent exopolymer particles (TEP)[J]. Deep-Sea Research Part II:Topical Studies in Oceanography, 1995, 42(1):99-109.
    Grossart H P, Simon M. Bacterial colonization and microbial decomposition of limnetic organic aggregates (lake snow)[J]. Aquatic Microbial Ecology, 1998, 15(2):127-140.
    Kozlowski W, Vernet M, Lamerdin S. Predominance of cryptomonads and diatoms in Antarctic coastal waters[J]. Antarctic Journal of the United States, 1995, 30:267-268.
    Passow U, Kozlowski W, Vernet M. Distribution of Transparent Exopolymer Particles (TEP) during summer at a permanent station in Antarctica[J]. Antarctic Journal of the United States, 1995, 30:265-266.
    Schuster S, Herndl G J. Formation and significance of transparent exopolymer particles in the Northern Adriatic Sea[J]. Marine Ecology Progress Series, 1995, 124(1/3):227-236.
    Ramaiah N, Yoshikawa T, Furuya K. Temporal variations in transparent exopolymer particles (TEP) associated with a diatom spring bloom in a subarctic ria in Japan[J]. Marine Ecology Progress Series, 2001, 212(1):79-88.
    Wild C. Effekte von "marine snow"-Sedimentation auf Steinkorallen (Hexacorallia, Scleractinia) des Great Barrier Reef, Australia[D]. Bremen:University of Bremen, Dept of Biology and Chemistry, 2000.
    Passow U, Alldredge A L. A dye-binding assay for the spectrophotometric measurement of transparent exopolymer particles (TEP)[J]. Limnology and Oceanography, 1995, 40(7):1326-1335.
    Mari X, Dam H G. Production, concentration, and isolation of transparent exopolymeric particles using paramagnetic functionalized microspheres[J]. Limnology and Oceanography, 2004, 2(1):13-24.
    Mari X, Burd A. Seasonal size spectra of transparent exopolymeric particles (TEP) in a coastal sea and comparison with those predicted using coagulation theory[J]. Marine Ecology Progress Series, 1998, 163:63-76.
    Krembs C E, Eicken H, Junge K, et al. High concentrations of exopolymeric substances in Arctic winter sea ice:implications for the polar ocean carbon cycle and cryoprotection of diatoms[J]. Deep-Sea Research Part Ⅰ:Oceanographic Research Papers, 2002, 49(12):2163-2181.
    Engel A. Direct relationship between CO2 uptake and transparent exopolymer particles production in natural phytoplankton[J]. Journal of Plankton Research, 2002, 24(1):49-53.
    García C M, Prieto L, Vargas M, et al. Hydrodynamics and the spatial distribution of plankton and TEP in the Gulf of Cádiz (SW Iberian Peninsula)[J]. Journal of Plankton Research, 2002, 24(8):817-833.
    Fabricius K E, Wild C, Wolanski E, et al. Effects of transparent exopolymer particles and muddy terrigenous sediments on the survival of hard coral recruits[J]. Estuarine, Coastal and Shelf Science, 2003, 57(4):613-621.
    Engel A. Distribution of transparent exopolymer particles (TEP) in the northeast Atlantic Ocean and their potential significance for aggregation processes[J]. Deep-Sea Research Part Ⅰ:Oceanographic Research Papers, 2004, 51(1):83-92.
  • 加载中
计量
  • 文章访问数:  1612
  • HTML全文浏览量:  7
  • PDF下载量:  1722
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-20
  • 修回日期:  2016-03-31

目录

    /

    返回文章
    返回