留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CMIP5气候模式下淡水通量变化

张守文 王辉 姜华 杜凌

张守文, 王辉, 姜华, 杜凌. CMIP5气候模式下淡水通量变化[J]. 海洋学报, 2016, 38(1): 10-19. doi: 10.3969/j.issn.0253-4193.2016.01.002
引用本文: 张守文, 王辉, 姜华, 杜凌. CMIP5气候模式下淡水通量变化[J]. 海洋学报, 2016, 38(1): 10-19. doi: 10.3969/j.issn.0253-4193.2016.01.002
Zhang Shouwen, Wang Hui, Jiang Hua, Du Ling. Freshwater flux variations based on CMIP5 climate models[J]. Haiyang Xuebao, 2016, 38(1): 10-19. doi: 10.3969/j.issn.0253-4193.2016.01.002
Citation: Zhang Shouwen, Wang Hui, Jiang Hua, Du Ling. Freshwater flux variations based on CMIP5 climate models[J]. Haiyang Xuebao, 2016, 38(1): 10-19. doi: 10.3969/j.issn.0253-4193.2016.01.002

CMIP5气候模式下淡水通量变化

doi: 10.3969/j.issn.0253-4193.2016.01.002
基金项目: 国家海洋局海洋公益性专项(201505013);国家自然科学基金(41376008,41106024,41376016)。

Freshwater flux variations based on CMIP5 climate models

  • 摘要: 基于全球降水气候态计划(GPCP)的降水资料和美国伍兹霍尔海洋研究所(WHOI)的客观分析海气通量(OAFlux)的蒸发数据,对CMIP5的13个耦合模式的淡水通量历史模拟结果进行评估。结果表明:模式能够模拟出淡水通量的气候态空间分布,但普遍存在双热带辐合带(ITCZ)现象,热带海域是模式模拟不确定性最大的区域。模式能较好模拟出纬向平均的淡水通量的分布特征,但量值较实测偏小,且由于模式对1月10°S附近淡水通量的模拟过低,导致年平均的赤道和10°S之间的淡水通量模拟存在明显的偏差。季节尺度上,模式对北半球淡水通量的变化特征有很好的模拟能力,但对南半球的模拟能力不足。年际尺度上,模式普遍能够刻画ENSO引起的淡水通量在太平洋中部同西太平洋以及印尼贯通流反相变化的空间分布特征,但是时间特征模拟很差。从各个方面评估模式的历史模拟结果,多模式集合的结果都要优于单个模式的结果。全球变暖背景下,未来淡水通量变化最显著的区域位于热带和亚热带区域。原本蒸发(降水)占主导的海域,蒸发(降水)更强。不同气候情景下,淡水通量变化的空间形态没有显著变化,但RCP8.5气候情景下模拟的淡水通量变化幅度及模式间变化的一致性均强于RCP4.5的结果。
  • Huang B Y,Mehta V M,Schneider N. Oceanic response to idealized net atmospheric freshwater in the pacific at the decadal time scale[J]. J Phys Oceanogr,2005,35(12): 2467-2486.
    Renold M,Raible C C,Yoshimori M,et al. Simulated resumption of the north Atlantic meridional overturning circulation-Slow basin-wide advection and abrupt local convection[J]. Quatern Sci Rev,2010,29(1/2): 101-112.
    Zhang L P,Wu L X,Zhang J X. Coupled ocean-atmosphere responses to recent freshwater flux changes over the Kuroshio-Oyashio Extension region[J]. J Climate,2011,24(5): 1507-1524.
    Zhang R H,Zheng F,Zhu J S,et al. Modulation of El Niño-Southern Oscillation by freshwater flux and salinity variability in the tropical Pacific[J]. Adv Atmos Sci,2012,29(4): 647-660.
    Huntington T G. Evidence for intensification of the global water cycle: review and synthesis[J]. J Hydrol,2006,319(1/4): 83-95.
    Oki T,Kanae S. Global hydrological cycles and world water resources[J]. Science,2006,313(5790): 1068-1072.
    IPCC. Summary for policymakers[C]// Solomon S,Qin D,Manning M,et al. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press,2007.
    IPCC. Climate change 2013: The physical science basis[C]//Stocker T F,Qin D,Plattner G K,et al. Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press,2013: 1535.
    Held I M,Soden B J. Robust responses of the hydrological cycle to global warming[J]. J Climate,2006,19(21): 5686-5699.
    Meehl G A,Stocker T F,Collins W D,et al. Global climate projections[C]//Solomon S,Qin D,Manning M,et al. Climate Change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press,2007: 747-845.
    Chou C,Neelin J D,Chen C A,et al. Evaluating the "rich-get-richer" mechanism in tropical precipitation change under global warming[J]. J Climate,2009,22(8): 1982-2005.
    Liu Z,Mehran A,Phillips T J,et al. Seasonal and regional biases in CMIP5 precipitation simulations[J]. Climate Res,2014,60(1): 35-50.
    Sillmann J,Kharin V V,Zhang X,et al. Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate[J]. J Geophys Res Atmos,2013,118(4): 1716-1733.
    Kumar S,Merwade V,Kinter Ⅲ J L,et al. Evaluation of temperature and precipitation trends and long-term persistence in CMIP5 twentieth-century climate simulations[J]. J Climate,2013,26(12): 4168-4185.
    陈晓晨,徐影,许崇海,等. CMIP5全球气候模式对中国地区降水模拟能力的评估[J]. 气候变化研究进展,2014,10(3): 217-225. Chen Xiaochen,Xu Ying,Xu Chonghai,et al. Assessment of precipitation simulations in China by CMIP5 multi-models[J]. Progressus Inquisitiones de Mutatione Climatis,2014,10(3): 217-225.
    李振朝,韦志刚,吕世华,等. CMIP5部分模式气温和降水模拟结果在北半球及青藏高原的检验[J]. 高原气象,2013,32(4): 921-928. Li Zhenchao,Wei Zhigang,Lv Shihua,et al. Verifications of surface air temperature and precipitation from CMIP5 model in northern hemisphere and Qinghai-Xizang plateau[J]. Plateau Meteorology,2013,32(4): 921-928.
    Adler R F,Huffman G J,Ghang A,et al. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present)[J]. J Hydrometeor,2003,4(6): 1147-1167.
    Yu L S,Weller R A. Objectively analyzed air-sea heat fluxes for the global ice-free oceans (1981-2005)[J]. Bull Amer Meteor Soc,2007,88(4): 527-539.
    Zheng F,Zhang R H. Effects of interannual salinity variability and freshwater flux forcing on the development of the 2007/08 La Niña event diagnosed from Argo and satellite data[J]. Dyn Atmos Ocn,2012,57: 45-57.
    Taylor K E,Stouffer R J,Meehl G A. An overview of CMIP5 and the experiment design[J]. Bull Amer Meteor Soc,2012,93(4): 485-498.
    Mechoso C R,Robertson A W,Barth N,et al. The seasonal cycle over the tropical Pacific in coupled ocean-atmosphere general circulation models[J]. Mon Wea Rev,1995,123(9): 2825-2838.
    Curtis S. The El Niño-southern oscillation and global precipitation[J]. Geography Compass,2008,2(3): 600-619.
    Schanze J J,Schmitt R W,Yu L L. The global oceanic freshwater cycle: a state-of-the-art quantification[J]. J Mar Res,2010,68(3/4): 569-595.
    Williams P D,Guilyardi E,Sutton R,et al. A new feedback on climate change from the hydrological cycle[J]. Geophys Res Lett,2007,34: L08706.
  • 加载中
计量
  • 文章访问数:  2193
  • HTML全文浏览量:  12
  • PDF下载量:  7496
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-19
  • 修回日期:  2015-02-02

目录

    /

    返回文章
    返回