留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CICE海冰模式中融池参数化方案的比较研究

王传印 苏洁

王传印, 苏洁. CICE海冰模式中融池参数化方案的比较研究[J]. 海洋学报, 2015, 37(11): 41-56. doi: 10.3969/j.issn.0253-4193.2015.11.005
引用本文: 王传印, 苏洁. CICE海冰模式中融池参数化方案的比较研究[J]. 海洋学报, 2015, 37(11): 41-56. doi: 10.3969/j.issn.0253-4193.2015.11.005
Wang Chuanyin, Su Jie. Comparison of melt pond parameterization schemes in CICE model[J]. Haiyang Xuebao, 2015, 37(11): 41-56. doi: 10.3969/j.issn.0253-4193.2015.11.005
Citation: Wang Chuanyin, Su Jie. Comparison of melt pond parameterization schemes in CICE model[J]. Haiyang Xuebao, 2015, 37(11): 41-56. doi: 10.3969/j.issn.0253-4193.2015.11.005

CICE海冰模式中融池参数化方案的比较研究

doi: 10.3969/j.issn.0253-4193.2015.11.005
基金项目: 国家重点基础研究发展计划(973)全球变化研究重大科学研究计划项目(2013CBA01805,2015CB953901);国家自然科学委员会基金项目(41276193)。

Comparison of melt pond parameterization schemes in CICE model

  • 摘要: 冰面融池的反照率介于海水和海冰之间,获得较准确的融池覆盖率对认识极区气冰海耦合系统的热量收支有重要意义。在数值模式中,融池覆盖率的模拟结果直接影响到冰面反照率计算的准确性,本文对CICE5.0中的3种融池参数化方案进行了较系统的比较分析,结果显示3种方案各有优缺点,模拟结果都存在一些问题。cesm方案中判断融池冻结的条件更为合理。比较而言,融池冻结条件更改后的topo方案模拟的北冰洋区域平均融池覆盖率的年际变化幅度、融池覆盖范围、融池发展盛期持续时间与MODIS数据最接近。通过修改CICE5.0中的代码漏洞,研究了融池水的垂向渗透效应,这一效应会带来一些负面影响,如lvl方案中多年冰上几乎没有融池,说明目前的CICE模式中对于海冰渗透性演化或其他物理机制的处理仍有待改进。最后,着重讨论了topo方案的改进思路。
  • Krouse H R, Kadko D, Perovich D K, et al. Tracer studies of pathways and rates of meltwater transport through Arctic summer sea ice[J]. Journal of Geophysical Research: Oceans (1978-2012), 2002, 107(C10): C108046.
    Eicken H, Grenfell T C, Perovich D K, et al. Hydraulic controls of summer Arctic pack ice albedo[J]. Journal of Geophysical Research: Oceans (1978-2012), 2004, 109(C8):C08007.
    Skyllingstad E D, Paulson C A, Perovich D K. Simulation of melt pond evolution on level ice[J]. Journal of Geophysical Research: Oceans (1978-2012), 2009, 114(C12).
    Schröder D, Feltham D L, Flocco D, et al. September Arctic sea-ice minimum predicted by spring melt-pond fraction[J]. Nature Climate Change, 2014, 4(5): 353-357.
    National Research Council. Enhancing NASA's Contribution to Polar Science: A Review of Polar Geophysical Data Sets[M]. Washington: Natl Academy Press, 2002.
    Scharien R K, Yackel J J. Analysis of surface roughness and morphology of first-year sea ice melt ponds: Implications for microwave scattering[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2005, 43(12): 2927-2939.
    Polashenski C, Perovich D, Courville Z. The mechanisms of sea ice melt pond formation and evolution[J]. Journal of Geophysical Research: Oceans (1978-2012), 2012, 117(C1):C01001.
    Hanesiak J M, Barber D G, De Abreu R A, et al. Local and regional albedo observations of Arctic first-year sea ice during melt ponding[J]. Journal of Geophysical Research: Oceans (1978-2012), 2001, 106(C1): 1005-1016.
    Fetterer F, Untersteiner N. Observations of melt ponds on Arctic sea ice[J]. Journal of Geophysical Research: Oceans (1978-2012), 1998, 103(C11): 24821-24835.
    Perovich D K, Tucker W B, Ligett K A. Aerial observations of the evolution of ice surface conditions during summer[J]. Journal of Geophysical Research: Oceans (1978-2012), 2002, 107(C10): SHE 24-1-SHE 24-14.
    Rösel A, Kaleschke L, Birnbaum G. Melt ponds on Arctic sea ice determined from MODIS satellite data using an artificial neural network[J]. The Cryosphere, 2012, 6(2): 431-446.
    Istomina L, Heygster G, Huntemann M, et al. The melt pond fraction and spectral sea ice albedo retrieval from MERIS data: validation and trends of sea ice albedo and melt pond fraction in the Arctic for years 2002-2011[J]. The Cryosphere Discussions, 2014, 8: 5227-5292.
    SIDARUS Validation and calibration of the MPD retrieval using sea ice and melt pond albedo spectra measured during Polarstern cruise IceArc2012. 2014. Sea Ice Downstream services for Arctic and Antarctic Users and Stakeholders
    Taylor P D, Feltham D L. A model of melt pond evolution on sea ice[J]. Journal of Geophysical Research: Oceans (1978-2012), 2004, 109(C12): C12007.
    Lüthje M, Feltham D L, Taylor P D, et al. Modeling the summertime evolution of sea-ice melt ponds[J]. Journal of Geophysical Research: Oceans (1978-2012), 2006, 111(C2):C02001.
    Scott F, Feltham D L. A model of the three-dimensional evolution of Arctic melt ponds on first-year and multiyear sea ice[J]. Journal of Geophysical Research: Oceans (1978-2012), 2010, 115(C12).
    Flocco D, Feltham D L. A continuum model of melt pond evolution on Arctic sea ice[J]. Journal of Geophysical Research: Oceans (1978-2012), 2007, 112(C8): C08016.
    Hunke E C, Lipscomb W H, Turner A K, et al. CICE: the Los Alamos Sea Ice Model Documentation and Software User's Manual Version 4.0 LA-CC-06-012[J]. Los Alamos National Laboratory, Los Alamos NM, 2008, 87545: 115.
    Holland M M, Bailey D A, Briegleb B P, et al. Improved sea ice shortwave radiation physics in CCSM4: the impact of melt ponds and aerosols on Arctic sea ice[J]. Journal of Climate, 2012, 25(5): 1413-1430.
    Pedersen C A, Roeckner E, Lüthje M, et al. A new sea ice albedo scheme including melt ponds for ECHAM5 general circulation model[J]. Journal of Geophysical Research: Atmospheres (1984-2012), 2009, 114:D8.
    Roeckner E, Mauritsen T, Esch M, et al. Impact of melt ponds on Arctic sea ice in past and future climates as simulated by MPI-ESM[J]. Journal of Advances in Modeling Earth Systems, 2012, 4(3):M00A02.
    Flocco D, Feltham D L, Turner A K. Incorporation of a physically based melt pond scheme into the sea ice component of a climate model[J]. Journal of Geophysical Research: Oceans (1978-2012), 2010, 115(C8):C08012.
    Flocco D, Schroeder D, Feltham D L, et al. Impact of melt ponds on Arctic sea ice simulations from 1990 to 2007[J]. Journal of Geophysical Research: Oceans (1978-2012), 2012, 117(C9).
    Hunke E C, Hebert D A, Lecomte O. Level-ice melt ponds in the Los Alamos sea ice model, CICE[J]. Ocean Modelling, 2013, 71: 26-42.
    Hunke E C. Weighing the importance of surface forcing on sea ice: a September 2007 modelling study[J]. Quarterly Journal of the Royal Meteorological Society, 2014, 140(642).
    Hunke E C, Lipscomb W H, Turner A K, et al. CICE: the Los Alamos Sea Ice Model Documentation and Software User's Manual Version 5.0 LA-CC-06-012[S]. Los Alamos National Laboratory, Los Alamos NM, 2013, 87545: 115.
    Griffies S M, Biastoch A, Böning C, et al. Coordinated ocean-ice reference experiments (COREs)[J]. Ocean Modelling, 2009, 26(1): 1-46.
    Hunke E C, Holland M M. Global atmospheric forcing data for Arctic ice-ocean modeling[J]. Journal of Geophysical Research: Oceans (1978-2012), 2007, 112(C4): C04S14.
    Parkinson C L, Washington W M. A large-scale numerical model of sea ice[J]. Journal of Geophysical Research, 1979, 84(C1): 311-337.
    Hunke E C. Thickness sensitivities in the CICE sea ice model[J]. Ocean Modelling, 2010, 34(3): 137-149.
    Steele M, Morley R, Ermold W. PHC: A global ocean hydrography with a high-quality Arctic Ocean[J]. Journal of Climate, 2001, 14(9): 2079-2087.
    National Snow and Ice Data Center. Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data[OL]. http://nsidc.org/data/docs/daac/nsidc0051_gsfc_seaice.gd.html
    Hunke E C, Bitz C M. Age characteristics in a multidecadal Arctic sea ice simulation[J]. Journal of Geophysical Research: Oceans (1978-2012), 2009, 114(C8): C08013.
    Rösel A, Kaleschke L. Exceptional melt pond occurrence in the years 2007 and 2011 on the Arctic sea ice revealed from MODIS satellite data[J]. Journal of Geophysical Research: Oceans (1978-2012), 2012, 117(C5):C05018.
    Lecomte O, Fichefet T, Flocco D, et al. Interactions between wind-blown snow redistribution and melt ponds in a coupled ocean-sea ice model[J]. Ocean Modelling, 2014, 87: 67-80.
    Laine V, Manninen T, Riihelä A. High temporal resolution estimations of the Arctic sea ice albedo during the melting and refreezing periods of the years 2003-2011[J]. Remote Sensing of Environment, 2014, 140: 604-613.
    Perovich D, Richter-Menge J, Polashenski C, et al. Sea ice mass balance observations from the North Pole Environmental Observatory[J]. Geophysical Research Letters, 2014, 41(6): 2019-2025.
    Notz D. Sea-ice extent and its trend provide limited metrics of model performance[J]. The Cryosphere, 2014, 8(2): 229-243.
    Bitz C M, Holland M M, Hunke E C, et al. Maintenance of the sea-ice edge[J]. Journal of Climate, 2005, 18(15):2903-2921.
    Petrich C, Eicken H, Polashenski C M, et al. Snow dunes: A controlling factor of melt pond distribution on Arctic sea ice[J]. Journal of Geophysical Research: Oceans (1978-2012), 2012, 117, C09029:1-10
  • 加载中
计量
  • 文章访问数:  1509
  • HTML全文浏览量:  19
  • PDF下载量:  762
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-15

目录

    /

    返回文章
    返回