Characteristics of typhoon frequency in the western North Pacific and it relation to the air-sea fluxes
-
摘要: 利用1984-2002年联合台风预警中心(JTWC)最佳路径台风资料、全球海洋客观分析海气通量(OAFluxes)资料和NCAR/NCEP-2再分析资料,使用SVD等统计方法,对西北太平洋台风频数与低层大气环流及海气通量异常之间的关系进行了研究,结果发现150°E以东的低纬海区是台风频数年际异常变化最显著的区域,台风频数与低层大气环流异常、潜热通量和短波辐射通量变化有着密切的联系:当副热带高压强度减弱(增强)、脊线偏北(南)、主体东移(西伸)时,季风槽加深东进至160°E(西退至140°E),低纬的纬向西风加强(减弱),海洋输送给大气较多(少)潜热通量,盛行的纬向西风携带着季风槽南侧的暖湿水汽与副热带高压南缘偏东气流的水汽输送在150°E以东(以西)的低纬海区辐合,150°E以东辐合上升的暖湿气团吸收的短波辐射偏多(少),有利于(不利于)形成高温高湿的不稳定结构,台风能量不断(不易)积累,在低层强(弱)辐合、高层强(弱)辐散的环境场作用下,有利于(不利于)台风在150°E以东的低纬海区的生成。Abstract: Relying on the investigation and study, it is verified that the most abnormal places of western North Pacific typhoon frequency is the east part of 150°E in low latitude region. Whats more, having been testified, typhoon frequency is closely related to the 850 hPa atmospheric circulation, latent heat flux and short-wave radiation flux. It is found that when western Pacific subtropical high becomes weaker (stronger) and moves eastward (westward), the westerly in the low latitude region will be strengthened (weakened). Along with the monsoon troughs east movement to 160°E (west movement to 140°E), more (less) latent heat flux will be transmitted from the ocean to the air. A strong (weak) vapor source can be found in the southern of monsoon trough, which is brought by the prevailing (un-prevailing) westerly and then convergences the vapor of the south subtropical high that is embedded in the easterly vapor stream. Meanwhile, the converging upward warm wet vapor cloud clusters absorb plenty (lack) of short-wave radiation flux so (not) as to form a deep-thick high temperature and high humidity unstable structure. Finally, the accumulation of the typhoon energy, together with the strong (weak) lower convergence, and the increase (decrease) of the upper divergence, is beneficial (unbeneficial) to the typhoon generation in the east part of 150°E in the low latitude region.
-
Bunker A F. Computations of surface energy flux and annual air-sea interaction cycles of the North Atlantic Ocean[J]. Mon Wea Rev, 1976, 104:1122-1140. Iwasaka N, Hanawa K. Climatologies of marine meteorological variables and surface fluxes in the North Pacific computed from COADS[J].J Toohoku Geophys,1990,33:185-239. 陈连宝. 南海海气界面热量平衡的分布特征及其与台风活动的关系[J].热带海洋,1984, 3(3):27-35. 端义宏, 余晖, 伍荣生.热带气旋强度变化研究进展[J].气象学报,2005,63(5):636-645. 黄立文,吴国雄,宇如聪. 中尺度海-气相互作用对台风暴雨过程的影响[J].气象学报,2005,63(4):455-468. Bender M A, Ginis I, Kurihara Y. Numerical simulations of tropical cyclone-ocean interaction with a high-resolution coupled model[J].Journal of Geophysical Research,1993,98(D12): 23245-23263. 吴迪生.热带西太平洋海-气热量通量研究:Ⅱ.热带气旋状况下海-气热量交换的特征[J].大气科学,1996, 20(5):533-540. 马艳. 海面热作用对热带气旋发展的数值研究[J].水动力学研究与进展,2003,18(5):584-589. 吴迪生. 南海热带气旋状况下海气界面热量交换研究[J].大气科学,2001,25(3):330-340. Monobianco J. Explosive East Coast cyclogenesis over the Western North Atlantic Ocean: A composite study derived from ECMWF operational analyses[J]. Mon Wea Rev,1989,117: 2365-2383. Uccellini L W,Petersen R A, Kocin P J,et al. Synergistic interactions between an upper-level jet streak and diabatie processes that influence the development of a low-level jet and a secondary coastal cyclone[J]. Mon Wea Rev, 1987, 115: 2227-2261. Lisan Y, Weller R A. Objectively analyzed air-sea heat fluxes for the global ice-free Oceans(1981-2005)[J]. Amer Meteor Soc, 2007, 4: 527-539. 彭加毅,孙照勃. 春季赤道东太平洋海温异常对西太平洋副高的影响[J].南京气象学院学报,2002,23(2):191-195. 罗哲贤,马镜娴. 副热带高压南侧双台风相互作用的数值研究[J].气象学报,2001,59(4):450-458. 任素玲,刘屹岷,吴国雄. 西太平洋副热带高压和台风相互作用的数值试验研究[J].气象学报,2007,65(3):329-340. Wu Liang, Wen Zhiping, Huang Ronghui. A primary study of the correlation between the net air-sea heat flux and the interannual variation of western North Pacific tropical cyclone track and intensity[J]. Acta Oceanologica Sinica, 2011, 30(6): 27-35. Wu Liang, Wen Zhiping, Huang Ronghui, et al. Possible linkage between the Monsoon Trough variability and the tropical cyclone activity over the western North Pacific[J]. Mon Wea Rev, 2012, 140: 140-150. -
计量
- 文章访问数: 1993
- HTML全文浏览量: 27
- PDF下载量: 1495
- 被引次数: 0