留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

印度尼西亚海域潮波的数值研究

王永刚 魏泽勋 方国洪 陈海英 高秀敏

王永刚, 魏泽勋, 方国洪, 陈海英, 高秀敏. 印度尼西亚海域潮波的数值研究[J]. 海洋学报, 2014, 36(3): 1-8. doi: 10.3969/J.ISSN.0253-4193.2014.03.001
引用本文: 王永刚, 魏泽勋, 方国洪, 陈海英, 高秀敏. 印度尼西亚海域潮波的数值研究[J]. 海洋学报, 2014, 36(3): 1-8. doi: 10.3969/J.ISSN.0253-4193.2014.03.001
Wang Yonggang, Wei Zexun, Fang Guohong, Chen Haiying, Gao Xiumin. Numerical study of tides in the Indonesia seas[J]. Haiyang Xuebao, 2014, 36(3): 1-8. doi: 10.3969/J.ISSN.0253-4193.2014.03.001
Citation: Wang Yonggang, Wei Zexun, Fang Guohong, Chen Haiying, Gao Xiumin. Numerical study of tides in the Indonesia seas[J]. Haiyang Xuebao, 2014, 36(3): 1-8. doi: 10.3969/J.ISSN.0253-4193.2014.03.001

印度尼西亚海域潮波的数值研究

doi: 10.3969/J.ISSN.0253-4193.2014.03.001
基金项目: 国家自然科学青年基金项目——印尼海潮波和潮混合的分析和数值研究(40606006);国家自然科学基金项目——中国近海及邻近海区海洋与地球潮汐相互作用研究(40676009)。

Numerical study of tides in the Indonesia seas

  • 摘要: 基于ROMS模式构建了模拟区域为(15.52°S-7.13°N,110.39°~134.15°E)水平分辨率为2’的潮波数值模式,分别模拟了印尼海域M2、S2、K1、O1四个主要分潮。模拟结果与29个卫星高度计交叠点上的调和常数进行比较,符合较好。M2分潮的振幅均方根差为3.4 cm,迟角均方根差为5.9°;S2分潮的振幅均方根差为1.7 cm,迟角均方根差为6.3°;K1分潮振幅均方根差为1.1 cm,迟角均方根差为5.8°;O1分潮振幅均方根差为1.2 cm,迟角均方根差为4.4°。M2、S2、K1、O1分潮向量均方根差分别为3.8 cm、2.4 cm、1.9 cm和1.3 cm,模拟结果的相对偏差在10%左右。根据计算结果分析了印尼海域的潮汐特征及潮能传播规律,结果显示:爪哇海以外的印尼海域主要为不规则半日潮区;全日潮潮能主要由太平洋传入印尼海域,而半日潮潮能则是从印度洋传入印尼海域。
  • Hatayama T, Awaji T, Akitomo K. Tidal currents in the Indonesian seas and their effect on transport and mixing[J]. Journal of Geophysical Research, 1996, 101(C5): 12353—12373.
    Ray R D, Egbert G D, Erofeeva S Y. A brief overview of tides in the Indonesian seas[J]. Oceanography, 2005, 18(4): 74—79.
    Wyrtki K. Physical Oceanography of the Southeast Asian Waters[C]//Naga Report 2. Scripps Institution of Oceanography, La Jolla, California, 1961:195.
    Schwiderski E W. Global ocean tides, Part Ⅱ: The semidiurnal principal lunar tide (M2), atlas of tidal charts and maps[C]//Tech. Rep. NSWC TR 79-414, Naval Surface Weapons Center, 1979:49.
    Mihardja D K. Energy and momentum budget of the tides in Indonesian Waters[D]. Hamburg: Univ. of Hanburg, 1991.
    Mazzega P, Bergé M. Ocean tides in the Asian semi-enclosed seas from TOPEX/POSEIDON[J]. Journal of Geophysical Research, 1994, 99(C12): 24867—24881.
    Egbert G D, Erofeeva S Y. Efficient inverse modeling of barotropic ocean tides[J]. Journal of Atmospheric Oceanic Technology, 2002, 19: 183—204.
    Robertson R, Ffield A. M2 bartroclinic tides in the Indonesian seas[J]. Oceanography, 2005, 18(4): 62—73.
    Robertson R, Ffield A. Baroclinic tides in the Indonesian seas: Tidal fields and comparisons to observations[J]. Journal of Geophysical Research, 2008, 113, C07031, doi: 10.1029/2007JC004677.
    滕飞, 方国洪, 王新怡, 等. 印度尼西亚近海潮汐潮流的数值模拟[J]. 海洋科学进展, 2013, 31(2): 166—179.
    Song Y T, Haidvogel D. A semi-implicit ocean circulation model using a generalized topography following coordinate system[J]. Journal of Computational Physics, 1994, 115: 228—248.
    Robertson R. Barotropic and Baroclinic tides in the Ross Sea[J]. Antarctic Science, 2005, 17: 107—120.
    Egbert G D, Bennett A F, Foreman M G G. TOPEX/POSEIDON tides estimated using a global inverse model[J].Journal of Geophysical Research, 1994, 99(C12): 24821—24852.
    Fang Guohong, Wang Yonggang, Wei Zexun, et al. Empirical cotidal charts of the Bohai, Yellow, and East China Seas from 10 years of TOPEX/Poseidon altimetry[J]. Journal of Geophysical Research, 2004, 109, C11006, doi: 10.1029/2004JC002484.
    Egbert G D, Ray R D. Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data[J]. Nature, 2000, 405: 775—778.
    Egbert G D, Ray R D. Estimates of M2 tidal energy dissipation from Topex/Poseidon altimeter data[J]. Journal of Geophysical Research, 2001, 106(C10): 22475—22502.
    Niwa Y, Hibiya T. Numerical study of the spatial distribution of the M2 internal tide in the Pacific Ocean[J]. Journal of Geophysical Research, 2001, 106(C10): 22441—22449.
    Simmons H L, Hallberg R W, Arbic B K. Internal wave generation in a global baroclinic tide model[J]. Deep-Sea Research Ⅱ, 2004, 51(3):3043—3068.
    Ffield A, Gordon A L. Vertical mixing in the Indonesian thermocline[J]. Journal of Physical Oceanography, 1992, 22: 184—195.
    Ffield A, Gordon A L. Tidal mixing signatures in the Indonesian Seas[J]. Journal of Physical Oceanography, 1996, 26: 1924—1937.
    Gordon A L, Ffield A, Ilahude A G. Thermocline of the Flores and Banda Seas[J]. Journal of Geophysical Research, 1994, 99(C9): 18235—18242.
    Schiller A. Effects of explicit tidal forcing in an OGCM on the water-mass structure and circulation in the Indonesian throughflow region[J]. Ocean Modelling, 2004, 6: 31—49.
  • 加载中
计量
  • 文章访问数:  1452
  • HTML全文浏览量:  19
  • PDF下载量:  1228
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-26
  • 修回日期:  2013-08-05

目录

    /

    返回文章
    返回