留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

白令海和西北冰洋表层沉积物磁化率特征初步研究

汪卫国 戴霜 陈莉莉 吴日升 余兴光

汪卫国, 戴霜, 陈莉莉, 吴日升, 余兴光. 白令海和西北冰洋表层沉积物磁化率特征初步研究[J]. 海洋学报, 2014, 36(9): 121-131. doi: 10.3969.issn.0253-4193.2014.09.014
引用本文: 汪卫国, 戴霜, 陈莉莉, 吴日升, 余兴光. 白令海和西北冰洋表层沉积物磁化率特征初步研究[J]. 海洋学报, 2014, 36(9): 121-131. doi: 10.3969.issn.0253-4193.2014.09.014
Wang Weiguo, Dai Shuang, Chen Lili, Wu Risheng, Yu Xingguang. Magnetic susceptibility characteristics of surface sediments in Bering Sea and western Arctic Ocean: preliminary results[J]. Haiyang Xuebao, 2014, 36(9): 121-131. doi: 10.3969.issn.0253-4193.2014.09.014
Citation: Wang Weiguo, Dai Shuang, Chen Lili, Wu Risheng, Yu Xingguang. Magnetic susceptibility characteristics of surface sediments in Bering Sea and western Arctic Ocean: preliminary results[J]. Haiyang Xuebao, 2014, 36(9): 121-131. doi: 10.3969.issn.0253-4193.2014.09.014

白令海和西北冰洋表层沉积物磁化率特征初步研究

doi: 10.3969.issn.0253-4193.2014.09.014
基金项目: 中国第四次北极科考项目(CHINARE-2010);海洋行业公益性项目(201105022-2,201205003);南北极环境综合考察与评估专项(CHINARE2012-03-02,CHINARE2013-04-03-03)。

Magnetic susceptibility characteristics of surface sediments in Bering Sea and western Arctic Ocean: preliminary results

  • 摘要: 为了准确解释环境磁学参数记录的极地古气候环境变化信息,本研究对白令海和西北冰洋61个站位的表层沉积物进行了高、低频质量磁化率(χ)、非磁滞磁化率(χARM)和磁化率-温度(k-T)分析,以探明该区沉积物中磁性矿物的种类、来源与搬运路径。结果显示,样品的χ具有明显的地域分布特征。白令海的χ值整体高于楚科奇海,并在育空河口外侧和圣劳伦斯岛南侧较高,向北和向西南方向逐渐减小。楚科奇海中东部陆架上表层沉积χ值高于阿拉斯加沿岸,而西北冰洋深海平原和洋脊区的χ值最低。χARM的变化趋势与质量磁化率相似,但频率磁化率的变化趋势与质量磁化率正好相反。k-T分析结果显示阿留申海盆沉积物中的铁磁性矿物以磁赤铁矿占主导,白令海陆架育空河口外侧和圣劳伦斯岛南北两侧为磁铁矿,白令海陆架西部和楚科奇海陆架中东部为磁赤铁矿和磁铁矿,楚科奇海阿拉斯加沿岸为黄铁矿,而西北冰洋陆坡、深海平原和洋脊区为胶黄铁矿和黄铁矿,但高纬度区沉积物中的胶黄铁矿含量更高。沉积物中磁性矿物的区域性分布受沉积物来源、洋流和底质环境等因素的控制。白令海和楚科奇海陆架磁赤铁矿来源于亚洲大陆,白令海陆架东部的磁铁矿来自育空河流域,阿拉斯加沿岸沉积物中的黄铁矿,应为阿拉斯加西北部陆源侵蚀来源的或早期成岩作用形成的,西北冰洋深海盆区的胶黄铁矿,为自生成因的。
  • Oldfield F. Environmental magnetism-A personal perspective[J]. Quaternary Science Review, 1991, 10: 73-85.
    Thompson R, Oldfield F. Environmental Magnetism[M]. Winchester: Allen and Unwin, 1986.
    Verosub K L, Roberts A P. Environmental magnetism: Past, present, and future[J]. Journal of Geophysical Research,1995, 100: 2175-2192.
    Dekkers M J. Environmental magnetism: an introduction[J]. Geologie en Mijnbouw,1997, 76: 163-182.
    Evens M E, Heller F. Environmental Magnetism: Principles and Applications of Enviromagnetics[M]. San Diego: Academic Press, 2003.
    Liu Q, Roberts A P, Larrasoaa J C, et al. Environmental magnetism: Principles and Applications[J]. Reviews of Geophysics,2012, 50:RG4002.
    Watkins S J, Maher B A. Magnetic characterization of present-day deep-sea sediments and sources in the North Atlantic[J]. Earth and Planetary Science Letters,2003, 214: 379-394.
    Kissel C, Laj C, Mulder T, et al. The magnetic fraction: A tracer of deep sea circulation in the North Atlantic[J]. Earth and Planetary Science Letters, 2009, 288: 444-454.
    Ellwood B B, Balsam W L, Roberts H H. Gulf of Mexico sediment sources and sediment transport trends form magnetic susceptibility measurements of surface samples[J]. Marine Geology, 2006, 230: 237-248.
    Ge S, Shi X, Han Y. Distribution characteristics of magnetic susceptibility of the surface sediments in the southern Yellow Sea[J]. Chinese Science Bulletin, 2003, 48: 37-41.
    Liu J, Zhu R, Li G. Rock magnetic properties of the fine-grained sediment on the outer shelf of the East China Sea: implication for provenance[J]. Marine Geology, 2003, 193: 195-206.
    Liu J, Chen Z, Chen M, et al. Magnetic susceptibility variations and provenance of surface sediments in the South China Sea[J]. Sedimentary Geology, 2010, 230: 77-85.
    Wang Y, Dong H, Li G, et al. Magnetic properties of muddy sediments on the northeastern continental shelves of China: Implication for provenance and transportation[J]. Marine Geology, 2010, 274: 107-119.
    Hong C, Huh C. Magnetic properties as tracers for source-to-sink dispersal of sediments: A case study in the Taiwan Strait[J]. Earth and Planetary Science Letters, 2011, 309: 141-152.
    Yamazaki T, Ioka N. Environmental rock-magnetism of pelagic clay: Implications for Asian eolian input to the North Pacific since the Pliocene[J]. Paleoceanography, 1997, 12: 111-124.
    Itambi A C, Dobeneck T, Dekkers M J. Magnetic mineral inventory of equatorial Atlantic Ocean marine sediments off Senegal-glacial and interglacial contrast[J]. Geophysical Journal International, 2010, 183: 163-177.
    Horng C S, Chen K H. Complicated magnetic mineral assemblages in marine sediments offshore of Southwestern Taiwan: Possible influence of methane flux on the early diagenetic process[J]. Terr Atmos Ocean Sci, 2006,17: 1009-1026.
    Glasauer S, Langley S, Beveridge T J. Intracellular iron minerals in a dissimilatory iron-reducing bacterium[J]. Science, 2002, 295: 117-119.
    Bleil U. Sedimentary Magnetism [M]// Schulz H D, Zabel M. Marine Geochemistry. Springer, 2000: 73-84.
    Farine M, Esquivel D M S, Barros H G P. Magnetic iron-sulphur crystals from a magnetotactic microorganism[J]. Nature, 1990, 343: 256-258.
    Brachfeld S, Barletta F, St-Onge G, et al. Impact of diagenesis on the environmental magnetic record from a Holocene sedimentary sequence from the Chuchi-Alaskan margin, Arctic Ocean[J]. Global and Planetary Change, 2009, 68: 100-114.
    Stein R, Dittmers K, Fahl K, et al. Arctic (palaeo) river discharge and environmental change: evidence from the Holocene Kara Sea sedimentary record[J]. Quaternary Science Review, 2004, 23: 1485-1511.
    Darby D A. Sources of sediment found in sea ice from western Arctic Ocean, new insights into processes of entrainment and drift patterns[J]. Journal of Geophysical Research, 2003, 108: 3257-3269.
    Grebmeier J M, Cooper L W, Feder H M, et al. Ecosystem dynamics of the Pacific-influenced Northern Bering and Chuchi Seas in the Amerasian Arctic[J]. Progress in Oceanography, 2006, 71: 331-361.
    Sellén E, Jakobsson M, Backman J. Sedimentary regimes in Arctic’s Amerasian and Eurasian Basins: clues to differences in sedimentation rates[J]. Global and Planetary Change, 2008, 61: 275-284.
    Oches E A, Banerjee S K. Rock-magnetic proxies of climate change from loess-paleosol sediment of the Czech Pepublic[J]. Studia Geophysica et Geodaetica, 1996, 40: 287-300.
    Deng C, Zhu R, Verosub K L, et al. Paleoclimatic significance of the temperature-dependent susceptibility of Holocene loess along a NW-SE transect in the Chinese loess plateau[J]. Geophysical Research Letters, 2000, 27(22): 3715-3718.
    Zhu R, Shi C, Suchy V, et al. Magnetic properties and paleoclimatic implications of loess-paleosol sequences of Czech Republic[J]. Science in China (Series D), 2001, 44(5): 385-394.
    Deng C, Zhu R, Jackson M J, et al. Variability of the temperature-Dependent susceptibility of the Holocene eolian deposits in the Chinese Loess Plateau: A pedogenesis indicator[J]. Physics and Chemistry of the Earth (A), 2001, 26(11/12): 873-878.
    Liu J, Zhu R, Li T, et al. Sediment-magnetic signature of the mid-Holocene paleoenvironmental change in the central Okinawa Trough[J]. Marine Geology, 2007, 239: 19-31.
    Sun W W, Banerjee S K, Hunt C P. The role of maghemite in the enhancement of magnetic signal in the Chinese loess-paleosol sequence-an extensive rock magnetic study combined with citrate-bicarbonate-dithionite treatment[J]. Earth and Planetary Science Letters, 1995, 133: 493-505.
    Tudryn A, Tucholka P. Magnetic monitoring of thermal alteration for natural pyrite and greigite[J]. Acta Geophysica Polonica, 2004, 52 (4): 509-520.
    Li H, Zhang S. Detection of mineralogical changes in pyrite using measurements of temperature-dependence susceptibility[J]. Chinese Journal of Geophysics, 2005, 48(6): 1454-1461.
    Roberts A P. Magnetic properties of sedimentary greitite(Fe3S4)[J]. Earth and Planetary Science Letters, 1995, 134: 227-236.
    Torii M, Fukuma K, Horng C S, et al. Magnetic discrimination of pyrrhotite-and greigite-bearing sediment samples[J]. Geophysical Research Letters, 1996, 23: 1813-1816.
    刘健, 朱日祥, 李绍全, 等. 南黄海东南部冰后期泥质沉积物中磁性矿物的成岩变化及其对环境变化的响应[J]. 中国科学:D辑, 2003, 33(6): 583-592.
    Skinner B J, Erd R C, Grimaldi F S. Greigite, the thio-spinel of iron: A new mineral[J]. Am Mineral,1964, 49: 543-555.
    Dekkers M J. Magnetic properties of natural pyrrhotite II: High-and low temperature behaviour of Jrs and TRM as function of grain size[J]. Phys Earth Planet Inter. 1989, 57: 266-283.
    Zheng Y, Kissel C, Zheng H B, et al. Sedimentation on the East China Sea: Magnetic properties, diagenesis and paleoclimate implications[J]. Marine Geology, 2010, 268: 34-42.
    Peters C, Dekkers M J. Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size[J]. Physics and Chemistry of the Earth, 2003, 28: 659-667.
    Nagashina K, Asahara Y, Takeuchi F, et al. Contribution of detrital materials from the Yukon River to the continental shelf sediments of the Bering Sea based on the electron spin resonance signal intersity and crystallinity of quartz[J]. Deep-Sea Reserch II, 2012: 61-64,145-154.
    朱日祥, Kazanshy A , Matasova G, 等. 西伯利亚南部黄土沉积物的磁学性质[J]. 科学通报, 2000, 45(11):1200-1205.
    Maher B A, Prospero J M, Mackie D, et al. Global connections between Aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum[J]. Earth-Science Review, 2010, 99: 61-97.
    Asahara Y, Takeuchi F, Nagashima K, et al. Provenance of terrigenous detritus of the surface sediments in the Bering and Chukchi Seas as derived from Sr and Nd isotopes: Implications for recent climate change in the Arctic regions[J]. Deep-Sea Research II, 2012:61-64,155-171.
    Snowball I, Torri M. Incidence and significance of magnetic iron sulphides in Quaternary sediments and soils[M]//Maher B A, Thompson R. Quaternary Cliantes, Environments and Magnetism . Cambridge: Cambridge University Press, 1999: 199-230.
    http://maps.unomaha.edu/maher/Alaskatrip/USGSAlaskageomap.gif
    Chen Min, Ma Qiang, Guo Laodong, et al. Importance of lateral transport processes to 210Pb budget in the eastern Chukchi Sea during summer 2003[J]. Deep-Sea Research II, 2012, 53:81-84.
    Viscosi-Shirley C, Pisias N, Mammone K. Sediment source strength, transport pathways and accumulation patterns on the Siberian-Arctic’s Chuchi and Laptev shelves[J]. Continental shelf Research, 2003, 23: 1201-1223.
    Viscosi-Shirley C, Mammone K, Pisias N, et al. Clay mineralogy and mult-element chemistry of surface sediments on the Siberian-Arctic shelf. Implications for sediment provenance and grain size sorting[J]. Continental shelf Research, 2003, 23: 1175-1200.
    Karlin R, Levi S. Diagenesisi fo magnetic minerals in Recent heamipelagic sediments[J]. Nature, 1983, 303: 327-330.
    刘健. 磁性矿物还原成岩作用述评[J]. 海洋地质与第四纪地质, 2000,20(4): 103-107.
    Mann S, Sparks N H C, Frankel R B, et al. Biomineralization of ferromagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a magnetotactic bacterium[J]. Nature, 1990, 343: 258-261.
  • 加载中
计量
  • 文章访问数:  1483
  • HTML全文浏览量:  15
  • PDF下载量:  1014
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-11
  • 修回日期:  2013-12-26

目录

    /

    返回文章
    返回