A study on tidal asymmetry in the Zhujiang River Estuary
-
摘要: 珠江口是典型的亚热带大型河口,全日潮与半日潮相互作用显著,在全球气候变化和高强度人类活动叠加影响下,潮汐系统呈现显著变异特征。本研究针对全日潮(K1、O1)和半日潮(M2、S2)的非线性耦合机制,构建融合分潮振幅比、相对相位解析法与偏度理论的综合评估方法,系统揭示珠江河口正压潮变形的时空特征及其驱动机制。结果表明:潮汐不对称呈现湾口(落潮主导)向湾顶(涨潮主导)的转变特征,其主控机制由外海段的天文分潮组合(O1/K1/M2)主导逐步过渡为上游段的半日分潮(S2、M2)和浅水分潮(M4、MS4)共同作用;2010−2020年间上游分潮振幅衰减、相位增大,潮汐不对称由涨潮主导转为落潮主导,天文分潮相互作用的负不对称性增强,高频分潮的贡献减小;外海海域落潮主导的不对称性趋向减弱,天文−浅水分潮的相互作用表现为正不对称性;受大型基础设施建设、水资源配置工程及海平面上升等因素共同影响,岸线和地形特征均发生了显著改变,进而引发了潮汐动力系统的中长期调整。本研究为理解多尺度扰动下潮汐系统演变规律提供了新的分析框架,对河口综合治理具有重要参考价值。Abstract: The Zhujiang River Estuary, a typical subtropical large-scale estuary, exhibits significant interactions between diurnal and semi-diurnal tides. Under the combined impacts of global climate change and intensive human activities, its tidal dynamics system has undergone notable variations. This study focuses on the nonlinear coupling mechanisms between diurnal tides (K1, O1) and semi-diurnal tides (M2, S2), developing an integrated evaluation framework that combines constituent amplitude ratios, relative phase analysis, and skewness method. This approach systematically reveals the spatiotemporal characteristics and driving mechanisms of barotropic tidal deformation in the Pearl River Estuary. The results include: (1) Tidal asymmetry transitions from ebb dominance at the estuary mouth to flood dominance at the upper estuary, with the controlling mechanism shifting from astronomical constituent interactions (O1/K1/M2) in the outer estuary to synergistic effects of semi-diurnal constituents (S2, M2) and shallow-water constituents (M4, MS4) in the upper reaches; (2) From 2010 to 2020, upstream constituents exhibited amplitude attenuation and phase increases, leading to a reversal from flood-to-ebb dominated asymmetry. Negative asymmetry induced by astronomical constituent interactions intensified, while the contribution of high-frequency constituents decreased; (3) In offshore areas, ebb-dominated asymmetry weakened, with emerging positive asymmetry driven by interactions between astronomical and shallow-water constituents; (4) The tidal dynamics system of the Pearl River Estuary has undergone significant long-term adaptive adjustments. Due to the combined influences of large-scale infrastructure construction, water resource allocation projects, and sea level rise, coastline and terrain both occur significant changes, which further has driven middle-to-long term adjustment of tidal dynamics. This study provides a novel analytical framework for understanding tidal system evolution under multi-scale perturbations and offers crucial insights for integrated estuarine management.
-
Key words:
- tidal asymmetry /
- overtides /
- compound tides /
- skewness /
- Zhujiang River Estuary
-
表 1 主要分潮调和常数
Tab. 1 Harmonic constants of the main tidal constituents
海洋站
分潮广州 赤湾 珠海 大万山 振幅/
cm相位/
(°)振幅/
cm相位/
(°)振幅/
cm相位/
(°)振幅/
cm相位/
(°)M2 63.7 324.8 57.1 301.6 47.9 291.9 39.8 273.7 S2 23.2 357.4 21.4 332.0 18.9 322.7 15.7 308.2 K1 40.8 321.0 39.6 309.4 37.7 307.8 40.7 303.7 O1 31.8 270.5 31.2 260.1 30.1 258.1 28.6 254.6 MK3 3.3 185.7 1.7 150.8 1.3 60.6 1.4 24.5 MO3 3.1 153.2 1.3 100.9 0.4 350.4 1.0 296.5 M4 5.8 141.4 4.2 87.1 4.6 34.0 2.9 346.9 MS4 3.4 208.8 2.7 146.4 2.5 89.5 1.5 51.8 M6 1.5 353.6 0.6 275.0 0.8 205.2 0.4 214.2 MSf 3.9 35.0 1.9 86.8 2.7 30.8 3.6 45.6 表 2 4个验潮站正压潮不对称性
Tab. 2 Barotropic tidal asymmetry at the four tidal gauge stations
海洋站参数 广州 赤湾 珠海 大万山 $ {a}_{{{\mathrm{M}}}_{4}}/{a}_{{{\mathrm{M}}}_{2}} $ 0.091 0.074 0.096 0.073 $ 2{\varphi }_{{{\mathrm{M}}}_{2}}-{\varphi }_{{{\mathrm{M}}}_{4}} $ 148.2 156.1 189.8 200.5 $ {\varphi }_{{{\mathrm{K}}}_{1}}+{\varphi }_{{{\mathrm{O}}}_{1}}-{\varphi }_{{{\mathrm{M}}}_{2}} $ 266.7 267.9 274.0 284.6 $ \gamma $ 0.164 −0.142 −0.139 −0.690 表 3 总不对称性与分潮组合贡献(C1、C2和C3)
Tab. 3 Total asymmetry (skewness) and the three major combinations (C1, C2 and C3)
参数
验潮站$ {\gamma }_{N} $ C1 $ {\beta }_{1} $ C2 $ {\beta }_{2} $ C3 $ {\beta }_{3} $ 大万山 −0.442 O1/K1/M2 −0.350 M2/M4 −0.050 O1/M2/MO3 −0.020 珠海 −0.273 O1/K1/M2 −0.264 M2/M4 −0.035 M2/S2/MS4 −0.024 赤湾 −0.007 O1/K1/M2 −0.222 M2/M4 0.070 M2/S2/MS4 0.069 广州 0.179 O1/K1/M2 −0.189 M2/M4 0.113 M2/S2/MS4 0.089 表 4 主要分潮振幅和迟角年际变化
Tab. 4 Decadal variations of amplitudes and phases of the four major tidal constituents
分潮
验潮站M2 S2 K1 O1 振幅/
cm迟角/
(°)振幅/
cm迟角/
(°)振幅/
cm迟角/
(°)振幅/
cm迟角/
(°)大万山 1.6 −1.1 2.2 1.4 −7.4 5.3 0.6 −3.0 珠海 −0. 1 −0.4 −0. 2 −0.5 0.0 −1.1 0.0 −0.4 广州 −10.3 18.4 −3.9 17.0 −3.4 12.1 −0.2 5.5 注:表中数据为2020年相对2010年的变化。 表 5 验潮站潮汐不对称和分潮组合贡献的年代际变化
Tab. 5 Decadal variations of tidal asymmetry and the major combinations at tidal gauge stations
参数
验潮站年代 $ {\gamma }_{N} $ C1 $ {\beta }_{1} $ C2 $ {\beta }_{2} $ 大万山 2010 −0.442 O1/K1/M2 −0.350 M2/M4 −0.050 2020 −0.233 O1/K1/M2 −0.282 M2/S2/MS4 0.062 珠海 2010 −0.273 O1/K1/M2 −0.264 M2/M4 −0.035 2020 −0.273 O1/K1/M2 −0.267 M2/M4 −0.025 广州 2010 0.179 O1/K1/M2 −0.189 M2/M4 0.113 2020 −0.219 O1/K1/M2 −0.237 O1/M2/MO3 0.012 表 6 珠江三角洲输沙量和海平面变化
Tab. 6 Variations of sediment and sea level rise in the Zhujiang River Delta
多年平均 近10 a平均
(2011−2020年)2020年 年径流量/(108 m3) 2487 3042 2831.8 年输沙量/(104 t) 6645 2549.4 2718.3 年平均含沙量/(kg·m-3) 0.207 / 0.088 输沙模数/(t·a−1·km−2) 383.8 / 174.6 海平面/mm 0 60 68 注:“/”表示数据缺失;年平均含沙量为马口站和三水站平均值。 表 7 珠江三角洲潮汐不对称相关性分析
Tab. 7 Correlation Analysis of tidal asymmetry in the Zhujiang River Delta
局地坡度 河道深宽比 海平面高度 流量 输沙率 偏度 局地坡度 1 0.32 0.23 −0.02 −0.29 −0.46 河道深宽比 0.32 1 0.11 0.43 0.08 −0.02 海平面高度 0.23 0.11 1 0.67 0.30 0.27 流量 −0.02 0.43 0.67 1 0.54 0.31 输沙率 −0.29 0.08 0.30 0.54 1 0.32 偏度 −0.46 −0.02 0.27 0.31 0.32 1 -
[1] Friedrichs C T, Aubrey D G. Non-linear tidal distortion in shallow well-mixed estuaries: a synthesis[J]. Estuarine, Coastal and Shelf Science, 1988, 27(5): 521−545. doi: 10.1016/0272-7714(88)90082-0 [2] Prandle D. Relationships between tidal dynamics and bathymetry in strongly convergent estuaries[J]. Journal of Physical Oceanography, 2003, 33(12): 2738−2750. doi: 10.1175/1520-0485(2003)033<2738:RBTDAB>2.0.CO;2 [3] 李谊纯, 徐群. 瓯江口内外潮汐不对称研究[J]. 水利水运工程学报, 2013(5): 61−65. doi: 10.3969/j.issn.1009-640X.2013.05.009Li Yichun, Xu Qun. A study of tidal asymmetry in Oujiang estuary[J]. Hydro-Science and Engineering, 2013(5): 61−65. doi: 10.3969/j.issn.1009-640X.2013.05.009 [4] 李谊纯, 李庆, 林振良. 正规半日潮海域潮汐不对称性及量化[J]. 海洋工程, 2019, 37(6): 86−93.Li Yichun, Li Qing, Lin Zhenliang. Tidal asymmetry and its quantification in regular semidiurnal tide zones[J]. The Ocean Engineering, 2019, 37(6): 86−93. [5] Wang Z B, Jeuken C, De Vriend H J. Tidal asymmetry and residual sediment transport in estuaries[R/OL]. https://www.researchgate.net/publication/236846938_Tidal_asymmetry_and_residual_sediment_transport_in_estuaries. [6] Li Zhanhai, Jia Jianjun, Wang Yaping, et al. Net suspended sediment transport modulated by multiple flood-ebb asymmetries in the progressive tidal wave dominated and partially stratified Changjiang Estuary[J]. Marine Geology, 2022, 443: 106702. doi: 10.1016/j.margeo.2021.106702 [7] 乔立新, 张国安, 何青, 等. 长江分汊河口涨、落潮悬沙不对称特征及季节性差异[J]. 海洋学报, 2020, 42(3): 107−117. doi: 10.3969/j.issn.0253-4193.2020.03.010Qiao Lixin, Zhang Guoan, He Qing, et al. Tidal and seasonal asymmetry of suspended sediment concentration in branched channels of the Changjiang River Estuary[J]. Haiyang Xuebao, 2020, 42(3): 107−117. doi: 10.3969/j.issn.0253-4193.2020.03.010 [8] Jewell S A, Walker D J, Fortunato A B. Tidal asymmetry in a coastal lagoon subject to a mixed tidal regime[J]. Geomorphology, 2012, 138(1): 171−180. doi: 10.1016/j.geomorph.2011.08.032 [9] Du Jiabi, Shen Jian, Zhang Yinglong, et al. Tidal response to sea-level rise in different types of estuaries: the importance of length, bathymetry, and geometry[J]. Geophysical Research Letters, 2018, 45(1): 227−235. doi: 10.1002/2017GL075963 [10] Huang Haosheng, Chen Changsheng, Blanton J O, et al. A numerical study of tidal asymmetry in Okatee Creek, South Carolina[J]. Estuarine, Coastal and Shelf Science, 2008, 78(1): 190−202. doi: 10.1016/j.ecss.2007.11.027 [11] Nidzieko N J. Tidal asymmetry in estuaries with mixed semidiurnal/diurnal tides[J]. Journal of Geophysical Research: Oceans, 2010, 115(C8): C08006. [12] Manoj N T, Unnikrishnan A S, Sundar D. Tidal asymmetry in the Mandovi and Zuari Estuaries, the West Coast of India[J]. Journal of Coastal Research, 2009, 256(6): 1187−1197. [13] Song Dehai, Wang Xiaohua, Kiss A E, et al. The contribution to tidal asymmetry by different combinations of tidal constituents[J]. Journal of Geophysical Research Atmospheres, 2011, 116(C12): C12007. doi: 10.1029/2011JC007270 [14] 李谊纯, 董德信, 王一兵. 防城港湾潮余流及潮汐不对称特征[J]. 广东海洋大学学报, 2021, 41(4): 50−57. doi: 10.3969/j.issn.1673-9159.2021.04.006Li Yichun, Dong Dexin, Wang Yibing. Characteristics of tidal residual current and tidal asymmetry in Fangchenggang Gulf[J]. Journal of Guangdong Ocean University, 2021, 41(4): 50−57. doi: 10.3969/j.issn.1673-9159.2021.04.006 [15] Mao Qingwen, Shi Ping, Yin Kedong, et al. Tides and tidal currents in the Pearl River Estuary[J]. Continental Shelf Research, 2004, 24(16): 1797−1808. doi: 10.1016/j.csr.2004.06.008 [16] Cai Huayang, Yang Qingshu, Zhang Zihao, et al. Impact of river-tide dynamics on the temporal-spatial distribution of residual water level in the Pearl River channel networks[J]. Estuaries and Coasts, 2018, 41(7): 1885−1903. doi: 10.1007/s12237-018-0399-2 [17] Zhang Wei, Cao Yu, Zhu Yuliang, et al. Unravelling the causes of tidal asymmetry in deltas[J]. Journal of Hydrology, 2018, 564: 588−604. doi: 10.1016/j.jhydrol.2018.07.023 [18] 童朝锋, 司家林, 张蔚, 等. 伶仃洋洪季潮波传播变形及不对称性规律分析[J]. 热带海洋学报, 2020, 39(1): 36−52.Tong Chaofeng, Si Jialin, Zhang Wei, et al. Analysis of tidal wave propagation distortion and asymmetry in Lingding Bay during wet season[J]. Journal of Tropical Oceanography, 2020, 39(1): 36−52. [19] 许炜铭, 包芸. 重大工程引起的珠江河口潮波逆向不稳定传播现象[J]. 计算力学学报, 2011, 28(S1): 208−214.Xu Weiming, Bao Yun. Unsteady reverse transmission of tide wave by huge human activity in the estuary of Pearl River[J]. Chinese Journal of Computational Mechanics, 2011, 28(S1): 208−214. [20] Wu Z Y, Saito Y, Zhao D N, et al. Impact of human activities on subaqueous topographic change in Lingding Bay of the Pearl River estuary, China, during 1955−2013[J]. Scientific Reports, 2016, 6(1): 37742 doi: 10.1038/srep37742 [21] Pawlowicz R, Beardsley B, Lentz S. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE[J]. Computers & Geosciences, 2002, 28(8): 929−937. [22] Jay D A, Leffler K, Diefenderfer H L, et al. Tidal-fluvial and estuarine processes in the lower Columbia River: I. Along-channel water level variations, Pacific Ocean to Bonneville Dam[J]. Estuaries and Coasts, 2015, 38(2): 415−433. doi: 10.1007/s12237-014-9819-0 [23] Garel E, Zhang Ping, Cai Huayang. Dynamics of fortnightly water level variations along a tide-dominated estuary with negligible river discharge[J]. Ocean Science, 2021, 17(6): 1605−1621. doi: 10.5194/os-17-1605-2021 [24] Blanton J O, Lin Guoqing, Elston S A. Tidal current asymmetry in shallow estuaries and tidal creeks[J]. Continental Shelf Research, 2002, 22(11/13): 1731−1743. [25] Leuven J R F W, Pierik H J, Van Der Vegt M, et al. Sea-level-rise-induced threats depend on the size of tide-influenced estuaries worldwide[J]. Nature Climate Change, 2019, 9(12): 986−992. doi: 10.1038/s41558-019-0608-4 [26] 章卫胜, 张金善, 林瑞栋, 等. 中国近海潮汐变化对外海海平面上升的响应[J]. 水科学进展, 2013, 24(2): 243−250.Zhang Weisheng, Zhang Jinshan, Lin Ruidong, et al. Tidal response of sea level rise in marginal seas near China[J]. Advances in Water Science, 2013, 24(2): 243−250. [27] Yang Qingshu, Hu Shuai, Fu Linxi, et al. Responses of tidal duration asymmetry to morphological changes in Lingding Bay of the Pearl River Estuary[J]. Frontiers in Marine Science, 2022, 9: 983182. doi: 10.3389/fmars.2022.983182 -