留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

红树植物桐花树老林与幼林叶功能性状差异及权衡策略

盘远方 邱思婷 苏治南 范航清 权佳惠 潘良浩 邱广龙

盘远方,邱思婷,苏治南,等. 红树植物桐花树老林与幼林叶功能性状差异及权衡策略[J]. 海洋学报,2025,47(3):98–107 doi: 10.12284/hyxb2025030
引用本文: 盘远方,邱思婷,苏治南,等. 红树植物桐花树老林与幼林叶功能性状差异及权衡策略[J]. 海洋学报,2025,47(3):98–107 doi: 10.12284/hyxb2025030
Pan Yuanfang,Qiu Siting,Su Zhinan, et al. Differences and trade-off strategies of leaf functional traits between old and young forests of the mangrove Aegiceras corniculatum[J]. Haiyang Xuebao,2025, 47(3):98–107 doi: 10.12284/hyxb2025030
Citation: Pan Yuanfang,Qiu Siting,Su Zhinan, et al. Differences and trade-off strategies of leaf functional traits between old and young forests of the mangrove Aegiceras corniculatum[J]. Haiyang Xuebao,2025, 47(3):98–107 doi: 10.12284/hyxb2025030

红树植物桐花树老林与幼林叶功能性状差异及权衡策略

doi: 10.12284/hyxb2025030
基金项目: 北部湾红树林生态监测(2020−2024);广西科学院改革发展专项(2024YGFZ504-102)。
详细信息
    作者简介:

    盘远方(1994—),男,广西壮族自治区凌云县人,助理研究员,主要从事红树林与海草生态学研究。E-mail:yuanfangpan124@163.com

    通讯作者:

    邱广龙,研究员,主要从事海草与红树林生态学研究。E-mail:gqiu@gxams.ac.cn

  • 中图分类号: Q945.79

Differences and trade-off strategies of leaf functional traits between old and young forests of the mangrove Aegiceras corniculatum

  • 摘要: 桐花树(Aegiceras corniculatum)是我国常见的红树林先锋物种,在河口高等植物群落构成、海岸防风消浪方面具有重要作用。为了了解桐花树不同发育阶段叶功能性状的变异规律,本研究以桐花树为研究对象,分析了叶功能性状在老林与幼林之间的差异及权衡关系。结果表明:(1)叶面积、叶氮含量、叶厚度、叶绿素含量和叶干物质含量均表现为老林显著低于幼林,而比叶面积则表现为老林显著大于幼林。(2)老林与幼林的比叶面积与叶绿素含量、叶氮含量、叶干物质含量和叶厚度均呈显著负相关,且老林中相关性强度大于幼林;而老林与幼林的叶绿素含量、叶氮含量和叶厚度两两性状之间均呈显著正相关,且幼林中相关性强度大于老林。(3)主成分分析结果表明,比叶面积是影响桐花树老林的关键性状,叶绿素含量和叶氮含量是影响桐花树幼林的关键性状。(4)在叶功能性状的权衡关系中,幼林叶功能性状之间的权衡关系普遍大于老林。
  • 图  1  研究区位置及样方分布

    Fig.  1  Location of study area and sample distribution

    图  2  老林与幼林叶功能性状的比较

    LA: 叶面积 leaf area; LN: 叶氮含量 leaf nitrogen content; LT: 叶厚度 leaf thickness; Chl: 叶绿素含量chlorophyll content; LDMC: 叶干物质含量 leaf dry matter content; SLA: 比叶面积 specific leaf area。OF: 老林 old forest; YF: 幼林 young forest

    Fig.  2  Comparison of leaf functional traits between old and young forests

    图  3  不同方位老林与幼林叶功能性状比较

    LA: 叶面积 leaf area; LN: 叶氮含量 leaf nitrogen; LT: 叶厚度 leaf thickness; Chl: 叶绿素含量chlorophyll content; LDMC: 叶干物质含量 leaf dry matter content; SLA: 比叶面积 specific leaf area。E: 东 east; S: 南 south; W: 西 west; N: 北 north

    Fig.  3  Comparison of leaf functional traits between old and young forests at different locations

    图  4  老林与幼林叶功能性状关联

    LA: 叶面积 leaf area; LN: 叶氮含量 leaf nitrogen content; LT: 叶厚度 leaf thickness; Chl: 叶绿素含量chlorophyll content; LDMC: 叶干物质含量 leaf dry matter content; SLA: 比叶面积 specific leaf area。a: 老林; b: 幼林。*: p<0.05; **: p<0.01;***: p<0.001

    Fig.  4  Correlation between leaf functional traits in old and young forests

    图  5  老林与幼林叶功能性状的主成分分析

    LA: 叶面积 leaf area; LN: 叶氮含量 leaf nitrogen content; LT: 叶厚度 leaf thickness; Chl: 叶绿素含量chlorophyll content; LDMC: 叶干物质含量 leaf dry matter content; SLA: 比叶面积 specific leaf area

    Fig.  5  Principal component analysis(PCA) of leaf functional traits in old and young forests

    图  6  老林与幼林叶功能性状的权衡

    LA: 叶面积 leaf area; LN: 叶氮含量 leaf nitrogen content; LT: 叶厚度 leaf thickness; Chl: 叶绿素含量chlorophyll content; LDMC: 叶干物质含量 leaf dry matter content; SLA: 比叶面积 specific leaf area

    Fig.  6  Trade-offs between leaf functional traits in old and young forests

  • [1] Duke N C, Meynecke J O, Dittmann S, et al. A world without mangroves?[J]. Science, 2007, 317(5834): 41−42.
    [2] Dasgupta R, Shaw R. Participatory mangrove management in a changing climate[M]. Tokyo: Springer, 2017: 229−245.
    [3] 范航清, 王文卿. 中国红树林保育的若干重要问题[J]. 厦门大学学报(自然科学版), 2017, 56(3): 323−330.

    Fan Hangqing, Wang Wenqing. Some thematic issues for mangrove conservation in China[J]. Journal of Xiamen University (Natural Science), 2017, 56(3): 323−330.
    [4] 阚志毅, 陈光程, 陈彬, 等. 热带气旋对红树林的影响研究进展——基于文献计量分析[J]. 生态学报, 2023, 43(18): 7796−7806.

    Kan Zhiyi, Chen Guangcheng, Chen Bin, et al. Research progress on effects of tropical cyclones on mangroves based on CiteSpace[J]. Acta Ecologica Sinica, 2023, 43(18): 7796−7806.
    [5] 王友绍. 全球气候变化对红树林生态系统的影响、挑战与机遇[J]. 热带海洋学报, 2021, 40(3): 1−14. doi: 10.11978/YG2020006

    Wang Youshao. Impacts, challenges and opportunities of global climate change on mangrove ecosystems[J]. Journal of Tropical Oceanography, 2021, 40(3): 1−14. doi: 10.11978/YG2020006
    [6] 张乔民, 隋淑珍, 张叶春, 等. 红树林宜林海洋环境指标研究[J]. 生态学报, 2001, 21(9): 1427−1437. doi: 10.3321/j.issn:1000-0933.2001.09.005

    Zhang Qiaomin, Sui Shuzhen, Zhang Yechun, et al. Marine environmental indexes related to mangrove growth[J]. Acta Ecologica Sinica, 2001, 21(9): 1427−1437. doi: 10.3321/j.issn:1000-0933.2001.09.005
    [7] 张宜辉. 几种红树植物繁殖体发育和幼苗成长过程的生理生态学研究[D]. 厦门: 厦门大学, 2003.

    Zhang Yihui. The study of propagule development and seedling growth in some mangrove species[D]. Xiamen: Xiamen University, 2003.
    [8] 王冰清, 丁岳炼, 谭家得, 等. 淡水淹水胁迫对桐花树幼苗生长及生理特征的影响[J]. 热带农业科学, 2021, 41(3): 23−29.

    Wang Bingqing, Ding Yuelian, Tan Jiade, et al. Effects of fresh water flooding stress on growth and physiological characteristics of Aegiceras corniculatum Seedlings[J]. Chinese Journal of Tropical Agriculture, 2021, 41(3): 23−29.
    [9] 冯立辉, 徐扬帆, 陈文峰, 等. 盐胁迫对桐花树生长及生理的响应[J]. 湖北农业科学, 2022, 61(22): 34−36.

    Feng Lihui, Xu Yangfan, Chen Wenfeng, et al. Growth and physiological response of Aegiceras corniculata to salinity stress[J]. Hubei Agricultural Sciences, 2022, 61(22): 34−36.
    [10] 何斌源, 赖廷和, 陈剑锋, 等. 两种红树植物白骨壤(Avicennia marina)和桐花树(Aegiceras corniculatum)的耐淹性[J]. 生态学报, 2007, 27(3): 1130−1138. doi: 10.3321/j.issn:1000-0933.2007.03.038

    He Binyuan, Lai Tinghe, Chen Jianfeng, et al. Studies of the tolerance of Avicennia marina and Aegiceras corniculatum to seawater immersion in Guangxi, China[J]. Acta Ecologica Sinica, 2007, 27(3): 1130−1138. doi: 10.3321/j.issn:1000-0933.2007.03.038
    [11] 刘亚云, 孙红斌, 陈桂珠. 多氯联苯对桐花树幼苗生长及膜保护酶系统的影响[J]. 应用生态学报, 2007, 18(1): 123−128. doi: 10.3321/j.issn:1001-9332.2007.01.021

    Liu Yayun, Sun Hongbin, Chen Guizhu. Effects of PCBs on Aegiceras corniculatum seedlings growth and membrane protective enzyme system[J]. Chinese Journal of Applied Ecology, 2007, 18(1): 123−128. doi: 10.3321/j.issn:1001-9332.2007.01.021
    [12] Deng Jun, Guo Peiyong, Zhang Xiaoyan, et al. An evaluation on the bioavailability of heavy metals in the sediments from a restored mangrove forest in the Jinjiang Estuary, Fujian, China[J]. Ecotoxicology and Environmental Safety, 2019, 180: 501−508. doi: 10.1016/j.ecoenv.2019.05.044
    [13] 廖宝文, 郑德璋, 郑松发, 等. 红树植物桐花树育苗造林技术的研究[J]. 林业科学研究, 1998, 11(5): 474−480. doi: 10.3321/j.issn:1001-1498.1998.05.004

    Liao Baowen, Zheng Dezhang, Zheng Songfa, et al. The studies on seedling nursery and afforestation techniques of Aegiceras corniculatum of mangroves[J]. Forest Research, 1998, 11(5): 474−480. doi: 10.3321/j.issn:1001-1498.1998.05.004
    [14] 覃杰, 杨景竣, 田红灯, 等. 不同播种处理对桐花树胚轴萌发和生长的影响[J]. 广西林业科学, 2024, 53(1): 62−70

    Qin Jie, Yang Jingjun, Tian Hongdeng, et al. Effects of different sowing treatments on germination and growths of Aegiceras corniculatum hypocotyls[J]. Guangxi Forestry Science, 2024, 53(1): 62−70.
    [15] 陈思意, 李军建, 殷雅欣, 等. 低温胁迫抑制桐花树幼苗光合作用的生理机制[J/OL]. 生态学杂志, 2024[2024-08-27]. http://kns.cnki.net/kcms/detail/21.1148.q.20240509.1835.006.html.

    Chen Siyi, Li Junjian, Yin Yaxin, et al. The physiological mechanism of low temperature stress inhibiting photosynthesis in seedlings of Aegiceras corniculatum[J]. Chinese Journal of Ecology, 2024[2024-08-27]. http://kns.cnki.net/kcms/detail/21.1148.q.20240509.1835.006.html.
    [16] Wang Shumin, Wang Youshao, Su Boyu, et al. Ecophysiological responses of five mangrove species (Bruguiera gymnorrhiza, Rhizophora stylosa, Aegiceras corniculatum, Avicennia marina, and Kandelia obovata) to chilling stress[J]. Frontiers in Marine Science, 2022, 9: 846566. doi: 10.3389/fmars.2022.846566
    [17] 宁世江, 蒋运生, 邓泽龙. 广西龙门岛群桐花树天然林生物量的初步研究[J]. 植物生态学报, 1996, 20(1): 57−64.

    Ning Shijiang, Jiang Yunsheng, Deng Zelong. A preliminary study on biomass of Aegiceras corniculatum natural forest in Longmen Islets of Guangxi[J]. Chinese Journal of Plant Ecology, 1996, 20(1): 57−64.
    [18] Garnier E, Laurent G, Bellmann A, et al. Consistency of species ranking based on functional leaf traits[J]. New Phytologist, 2001, 152(1): 69−83. doi: 10.1046/j.0028-646x.2001.00239.x
    [19] Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428(6985): 821−827. doi: 10.1038/nature02403
    [20] Ackerly D, Knight C, Weiss S, et al. Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses[J]. Oecologia, 2002, 130(3): 449−457. doi: 10.1007/s004420100805
    [21] Messier J, McGill B J, Lechowicz M J. How do traits vary across ecological scales? A case for trait-based ecology[J]. Ecology Letters, 2010, 13(7): 838−848. doi: 10.1111/j.1461-0248.2010.01476.x
    [22] Klipel J, Bergamin R S, Seger G D D S, et al. Plant functional traits explain species abundance patterns and strategies shifts among saplings and adult trees in Araucaria forests[J]. Austral Ecology, 2021, 46(7): 1084−1096. doi: 10.1111/aec.13044
    [23] 王英鲲, 吕坤, 吴宇, 等. 蛛网萼叶功能性状随植物生长发育进程的变化[J]. 植物科学学报, 2021, 39(5): 526−534. doi: 10.11913/PSJ.2095-0837.2021.50526

    Wang Yingkun, Lü Kun, Wu Yu, et al. Changes in the functional traits of Platycrater arguta Sieb. et Zucc. leaves with plant growth and development[J]. Plant Science Journal, 2021, 39(5): 526−534. doi: 10.11913/PSJ.2095-0837.2021.50526
    [24] 邹旭阁, 王寅, 王健铭, 等. 胡杨叶功能性状的协同与权衡及对树龄、土壤因子的响应[J]. 北京林业大学学报, 2024, 46(5): 82−92. doi: 10.12171/j.1000-1522.20220522

    Zou Xuge, Wang Yin, Wang Jianming, et al. Coordination and trade-off of leaf functional traits in Populus euphratica and their response to tree age and soil factors[J]. Journal of Beijing Forestry University, 2024, 46(5): 82−92. doi: 10.12171/j.1000-1522.20220522
    [25] Reich P B, Wright I J, Cavender-Bares J, et al. The evolution of plant functional variation: traits, spectra, and strategies[J]. International Journal of Plant Sciences, 2003, 164(S3): S143−S164. doi: 10.1086/374368
    [26] Baraloto C, Timothy C E, Poorter L, et al. Decoupled leaf and stem economics in rain forest trees[J]. Ecology letters, 2010, 13(11): 1338−1347. doi: 10.1111/j.1461-0248.2010.01517.x
    [27] Webb C T, Hoeting J A, Ames G M, et al. A structured and dynamic framework to advance traits-based theory and prediction in ecology[J]. Ecology Letters, 2010, 13(3): 267−283. doi: 10.1111/j.1461-0248.2010.01444.x
    [28] Violle C, Navas M L, Vile D, et al. Let the concept of trait be functional![J]. Oikos, 2007, 116(5): 882−892. doi: 10.1111/j.0030-1299.2007.15559.x
    [29] 王日明, 戴志军, 黄鹄, 等. 南流江河口桐花树生物动力地貌过程研究[J]. 海洋学报, 2021, 43(9): 102−114.

    Wang Riming, Dai Zhijun, Huang Hu, et al. Research on bio-morphodynamic processes of Aegiceras corniculatum in the Nanliu River Estuary[J]. Haiyang Xuebao, 2021, 43(9): 102−114.
    [30] 黄鹄, 戴志军, 盛凯. 广西北海银滩侵蚀及其与海平面上升的关系[J]. 台湾海峡, 2011, 30(2): 275−279.

    Huang Hu, Dai Zhijun, Sheng Kai. Coastal erosion and associated response to the sea-level rise of Yintan, Beihai, Guangxi Province[J]. Journal of Oceanography in Taiwan Strait, 2011, 30(2): 275−279.
    [31] 蔡锋, 苏贤泽, 曹惠美, 等. 华南砂质海滩的动力地貌分析[J]. 海洋学报, 2005, 27(2): 106−114

    Cai Feng, Su Xianze, Cao Huimei, et al. Analysis on morphodynamics of sandy beaches in South China[J]. Haiyang Xuebao, 2005, 27(2): 106−114
    [32] Bradford J B, D’Amato A W. Recognizing trade-offs in multi-objective land management[J]. Frontiers in Ecology and the Environment, 2012, 10(4): 210−216. doi: 10.1890/110031
    [33] Lu Nan, Fu Bojie, Jin Tiantian, et al. Trade-off analyses of multiple ecosystem services by plantations along a precipitation gradient across Loess Plateau landscapes[J]. Landscape Ecology, 2014, 29(10): 1697−1708. doi: 10.1007/s10980-014-0101-4
    [34] Khan M N I, Suwa R, Hagihara A. Allometric relationships for estimating the aboveground phytomass and leaf area of mangrove Kandelia candel (L. ) Druce trees in the Manko Wetland, Okinawa Island, Japan[J]. Trees, 2005, 19(3): 266−272. doi: 10.1007/s00468-004-0377-0
    [35] Alongi D M. Impact of global change on nutrient dynamics in mangrove forests[J]. Forests, 2018, 9(10): 596. doi: 10.3390/f9100596
    [36] Rovai A S, Barufi J B, Pagliosa P R, et al. Photosynthetic performance of restored and natural mangroves under different environmental constraints[J]. Environmental pollution, 2013, 181: 233−241. doi: 10.1016/j.envpol.2013.06.023
    [37] Wei L, Lin F, Gao J, et al. Complexity of leaf trait covariation for mangrove species[J]. npj Biodiversity[2025-05-07].
    [38] Kodikara K A S, Pathmasiri R, Irfan A, et al. Oxidative stress, leaf photosynthetic capacity and dry matter content in young mangrove plant Rhizophora mucronata Lam. under prolonged submergence and soil water stress[J]. Physiology and Molecular Biology of Plants, 2020, 26(8): 1609−1622. doi: 10.1007/s12298-020-00843-w
    [39] 耿梦娅, 陈芳清, 吕坤, 等. 濒危植物长柄双花木(Disanthus cercidifolius var. longipes) 叶功能性状随生长发育阶段的变化[J]. 植物科学学报, 2018, 36(6): 851−858. doi: 10.11913/PSJ.2095-0837.2018.60851

    Geng Mengya, Chen Fangqing, Lü Kun, et al. Effects of developmental stage on the leaf functional traits of the endangered shrub species Disanthus cercidifolius var. longipes[J]. Plant Science Journal, 2018, 36(6): 851−858. doi: 10.11913/PSJ.2095-0837.2018.60851
    [40] De La Riva E G, Tosto A, Pérez-Ramos I M, et al. A plant economics spectrum in Mediterranean forests along environmental gradients: Is there coordination among leaf, stem and root traits?[J]. Journal of vegetation science, 2016, 27(1): 187−199. doi: 10.1111/jvs.12341
    [41] 盘远方, 陈兴彬, 姜勇, 等. 桂林岩溶石山灌丛植物叶功能性状和土壤因子对坡向的响应[J]. 生态学报, 2018, 38(5): 1581−1589.

    Pna Yuanfang, Chen Xingbin, Jiang Yong, et al. Changes in leaf functional traits and soil environmental factors in response to slope gradient in Karst hills of Guilin[J]. Acta Ecologica Sinica, 2018, 38(5): 1581−1589.
    [42] Albert C H, Thuiller W, Yoccoz N G, et al. Intraspecific functional variability: extent, structure and sources of variation[J]. Journal of ecology, 2010, 98(3): 604−613. doi: 10.1111/j.1365-2745.2010.01651.x
    [43] Albert C H, Grassein F, Schurr F M, et al. When and how should intraspecific variability be considered in trait-based plant ecology?[J]. Perspectives in Plant Ecology, Evolution and Systematics, 2011, 13(3): 217−225. doi: 10.1016/j.ppees.2011.04.003
    [44] Reich P B, Walters M B, Kloeppel B D, et al. Different photosynthesis-nitrogen relations in deciduous hardwood and evergreen coniferous tree species[J]. Oecologia, 1995, 104(1): 24−30. doi: 10.1007/BF00365558
    [45] 王飞, 郭树江, 纪永福, 等. 不同演替阶段白刺灌丛沙堆土壤因子与叶功能性状关系研究[J]. 干旱区地理, 2022, 45(1): 176−184. doi: 10.12118/j.issn.10006060.2021.141

    Wang Fei, Guo Shujiang, Ji Yongfu, et al. Relationship between soil factors and leaf functional traits of Nitraria tangutorum shrub at different succession stages[J]. Arid Land Geography, 2022, 45(1): 176−184. doi: 10.12118/j.issn.10006060.2021.141
    [46] 张碧嘉, 于淼, 徐晴, 等. 性别和发育阶段对绒毛白蜡光合特征及叶功能性状的影响[J]. 生态学报, 2024, 44(1): 295−305.

    Zhang Bijia, Yu Miao, Xu Qing, et al. Effects of gender and development stages on photosynthetic characteristics and leaf functional traits of Fraxinus velutina Torr[J]. Acta Ecologica Sinica, 2024, 44(1): 295−305.
  • 加载中
图(6)
计量
  • 文章访问数:  2
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-17
  • 修回日期:  2024-12-31
  • 网络出版日期:  2025-06-09
  • 刊出日期:  2025-03-31

目录

    /

    返回文章
    返回