留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不规则波作用下岸基式振荡水柱波能装置的水动力性能研究

傅磊 宁德志 王荣泉 RobertMayon

傅磊,宁德志,王荣泉,等. 不规则波作用下岸基式振荡水柱波能装置的水动力性能研究[J]. 海洋学报,2024,46(1):101–110 doi: 10.12284/hyxb2024005
引用本文: 傅磊,宁德志,王荣泉,等. 不规则波作用下岸基式振荡水柱波能装置的水动力性能研究[J]. 海洋学报,2024,46(1):101–110 doi: 10.12284/hyxb2024005
Fu Lei,Ning Dezhi,Wang Rongquan, et al. Hydrodynamic performance study of a land-based OWC under the action of irregular wave[J]. Haiyang Xuebao,2024, 46(1):101–110 doi: 10.12284/hyxb2024005
Citation: Fu Lei,Ning Dezhi,Wang Rongquan, et al. Hydrodynamic performance study of a land-based OWC under the action of irregular wave[J]. Haiyang Xuebao,2024, 46(1):101–110 doi: 10.12284/hyxb2024005

不规则波作用下岸基式振荡水柱波能装置的水动力性能研究

doi: 10.12284/hyxb2024005
基金项目: 国家自然科学基金项目(52271260, 52001054);辽宁省兴辽英才计划项目(XLYC2002033);中央高校基本科研业务费资助项目(DUT23RC(3)017)。
详细信息
    作者简介:

    傅磊(1999—),男,江苏省镇江市人,从事波浪能高效利用研究。E-mail:fulei@mail.dlut.edu.cn

    通讯作者:

    王荣泉(1989—),男,湖南省邵阳市人,主要从事波浪能开发与利用研究。E-mail: rqwang@dlut.edu.cn

  • 中图分类号: P731.22

Hydrodynamic performance study of a land-based OWC under the action of irregular wave

  • 摘要: 为了研究真实海域中振荡水柱(OWC)波能转换装置的水动力性能,本文基于势流理论和高阶边界元方法,建立了不规则波与岸基式OWC波能装置相互作用的二维非线性数值模型,不规则波基于JONSWAP谱生成。为了考虑由于水体黏性引起的能量耗散,在气室内水面边界条件中引入人工黏性阻尼。并在大连理工大学波流水槽中开展了物理模型试验,对数值模型的有效性进行了验证。研究发现,在不规则波作用下,OWC波能装置的水动力效率相较于规则波作用下有所降低,特别是在低频波区域效率差值最大。与规则波相比,不规则波浪作用下装置峰值效率对应的频率变大。气室内的相对水面高程随着有效波高的增加而降低,而气室内相对气压则随有效波高的增加而增大。OWC波能装置的水动力效率受有效波高的影响较小,其峰值效率对应的频率不受波浪非线性的影响。本文可以为OWC波能装置的设计提供参考。
  • 图  1  数值水槽示意图

    Fig.  1  Sketch of the numerical flume

    图  2  水槽试验模型布置

    Fig.  2  The OWC device and the sketch of experimental set-up

    图  3  自由液面(a)和气体压强(b)的试验数据重复性对比

    Fig.  3  Comparison of experimental repeatability of free surface (a) and air pressure (b)

    图  4  数值水槽网格划分示意图

    Fig.  4  Sketch of the meshes of the numerical wave flume

    图  5  预测的转换效率和试验结果对比

    Fig.  5  Comparison of predicted hydrodynamic efficiency and experimental results

    图  6  数值预测与试验中波能谱(a)和压强谱(b)对比

    Fig.  6  Comparison of the wave energy spectrums (a) and the air pressure spectrums (b) between numerical with experiments

    图  7  不同峰值周期下气室内液面高程(a)和气体压强(b)的时域曲线

    Fig.  7  Time-domain series of the surface elevation (a) and air pressure (b) for different peak periods

    图  8  气室内液面高程(a)和气体压强(b)随kph的特征统计值变化

    Fig.  8  Variations of the surface elevation (a) and air pressure (b) with kph for characteristic statistics

    图  9  规则波和不规则波场景下OWC装置效率的比较

    Fig.  9  Comparison of hydrodynamic efficiency of the OWC under regular and irregular wave scenarios

    图  10  入射波、气室外侧和气室中点波面的波能谱

    Fig.  10  The wave energy spectrums of incident wave, surface elevation at outside and mid-point of the chamber

    图  11  不同有效波高下自由表面高程(a)和气体压强(b)随kph的变化

    Fig.  11  Variations of the free-surface elevations (a) and air pressures (b) with kph for different significant wave heights

    图  12  Tp = 1.9 s时气室内液面的谱分析

    Fig.  12  Spectral analysis of surface inside the chamber at Tp = 1.9 s

    图  13  不同有效波高下OWC效率随kph的变化

    Fig.  13  Variations of the OWC efficiency with kph for different significant wave heights

    表  1  物理装置的具体设计参数

    Tab.  1  The specific design dimensions of the physical devices

    结构参数尺寸/m
    前墙吃水d0.125
    气室宽度b0.7
    前墙厚度w0.05
    圆孔直径 D0.067
    气室高度ha0.2
    下载: 导出CSV

    表  2  规则波与不规则波的波浪条件

    Tab.  2  Wave conditions of regular and irregular waves

    规则波 与规则波同波浪
    参数的不规则波1
    与规则波同单宽波
    功率的不规则波2
    T/s H/m Tp/s Hs/m Tp/s Hs/m
    1.4 0.06 1.4 0.06 1.4 0.087 2
    1.5 0.06 1.5 0.06 1.5 0.087 5
    1.6 0.06 1.6 0.06 1.6 0.087 7
    1.7 0.06 1.7 0.06 1.7 0.087 9
    1.8 0.06 1.8 0.06 1.8 0.088 0
    1.9 0.06 1.9 0.06 1.9 0.088 0
    2.0 0.06 2.0 0.06 2.0 0.087 9
    2.1 0.06 2.1 0.06 2.1 0.087 8
    下载: 导出CSV
  • [1] Borthwick A G L. Marine renewable energy seascape[J]. Engineering, 2016, 2(1): 69−78. doi: 10.1016/J.ENG.2016.01.011
    [2] Gallutia D, Tahmasbi Fard M, Gutierrez Soto M, et al. Recent advances in wave energy conversion systems: from wave theory to devices and control strategies[J]. Ocean Engineering, 2022, 252: 111105. doi: 10.1016/j.oceaneng.2022.111105
    [3] 史宏达, 王传崑. 我国海洋能技术的进展与展望[J]. 太阳能, 2017(3): 30−37. doi: 10.3969/j.issn.1003-0417.2017.03.004

    Shi Hongda, Wang Chuankun. Progress and prospects of China’s ocean energy technology[J]. Solar Energy, 2017(3): 30−37. doi: 10.3969/j.issn.1003-0417.2017.03.004
    [4] Zhang Yongxing, Zhao Yongjie, Sun Wei, et al. Ocean wave energy converters: technical principle, device realization, and performance evaluation[J]. Renewable and Sustainable Energy Reviews, 2021, 141: 110764. doi: 10.1016/j.rser.2021.110764
    [5] Portillo J C C, Reis P F, Henriques J C C, et al. Backward bent-duct buoy or frontward bent-duct buoy? Review, assessment and optimisation[J]. Renewable and Sustainable Energy Reviews, 2019, 112: 353−368. doi: 10.1016/j.rser.2019.05.026
    [6] 游亚戈, 盛松伟, 吴必军. 海洋波浪能发电技术现状与前景[C]//中国海洋工程学会. 第十五届中国海洋(岸)工程学术讨论会论文集(上). 北京: 海洋出版社, 2011.

    You Yage, Sheng Songwei, Wu Bijun. Status and prospects of ocean wave power generation technology[C]//Chinese Society of Marine Engineering. 15th China Ocean (Onshore) Engineering Symposium. Beijing: China Ocean Press, 2011.
    [7] Cheng Yong, Fu Lei, Dai Saishuai, et al. Experimental and numerical analysis of a hybrid WEC-breakwater system combining an oscillating water column and an oscillating buoy[J]. Renewable and Sustainable Energy Reviews, 2022, 169: 112909. doi: 10.1016/j.rser.2022.112909
    [8] Cheng Yong, Fu Lei, Dai Saishuai, et al. Experimental and numerical investigation of WEC-type floating breakwaters: a single-pontoon oscillating buoy and a dual-pontoon oscillating water column[J]. Coastal Engineering, 2022, 177: 104188. doi: 10.1016/j.coastaleng.2022.104188
    [9] 姚宇, 张壮壮, 许从昊. 基于RANS方程的桩式U-OWC装置波浪荷载分析[J]. 海洋工程, 2023, 41(2): 93−106.

    Yao Yu, Zhang Zhuangzhuang, Xu Conghao. Study on the wave loads on a pile-type U-OWC wave energy device based on RANS Equations[J]. The Ocean Engineering, 2023, 41(2): 93−106.
    [10] Mora A, Bautista E, Méndez F. Influence of a tapered and slender wave collector on the increment of the efficiency of an oscillating water column wave-energy converter[J]. Ocean Engineering, 2017, 129: 20−36. doi: 10.1016/j.oceaneng.2016.11.001
    [11] Konispoliatis D N, Mavrakos S A. Hydrodynamic analysis of an array of interacting free-floating oscillating water column (OWC’s) devices[J]. Ocean Engineering, 2016, 111: 179−197. doi: 10.1016/j.oceaneng.2015.10.034
    [12] Vyzikas T, Deshoulières S, Barton M, et al. Experimental investigation of different geometries of fixed oscillating water column devices[J]. Renewable Energy, 2017, 104: 248−258. doi: 10.1016/j.renene.2016.11.061
    [13] 史宏达, 焦建辉, 刘臻, 等. 不规则波作用下OWC沉箱气室捕能效果研究[J]. 中国海洋大学学报(自然科学版), 2012, 42(1/2): 141−148.

    Shi Hongda, Jiao Jianhui, Liu Zhen, et al. Study on capture effect of air chamber of caisson breakwater as OWC under irregular waves[J]. Periodical of Ocean University of China, 2012, 42(1/2): 141−148.
    [14] Liu Zhen, Xu Chuanli, Kim K, et al. Experimental study on the overall performance of a model OWC system under the free-spinning mode in irregular waves[J]. Energy, 2022, 250: 123779. doi: 10.1016/j.energy.2022.123779
    [15] Zabihi M, Mazaheri S, Montazeri Namin M, et al. Irregular wave interaction with an offshore OWC wave energy converter[J]. Ocean Engineering, 2021, 222: 108619. doi: 10.1016/j.oceaneng.2021.108619
    [16] Gervelas R, Trarieux F, Patel M. A time-domain simulator for an oscillating water column in irregular waves at model scale[J]. Ocean Engineering, 2011, 38(8/9): 1007−1013.
    [17] Rezanejad K, Guedes Soares C, López I, et al. Experimental and numerical investigation of the hydrodynamic performance of an oscillating water column wave energy converter[J]. Renewable Energy, 2017, 106: 1−16. doi: 10.1016/j.renene.2017.01.003
    [18] Zhou Zhimin, Ke Song, Wang Rongquan, et al. Hydrodynamic investigation on a land-fixed OWC wave energy device under irregular waves[J]. Applied Sciences, 2022, 12(6): 2855. doi: 10.3390/app12062855
    [19] Ning D Z, Teng B, Eatock Taylor R, et al. Numerical simulation of non-linear regular and focused waves in an infinite water-depth[J]. Ocean Engineering, 2008, 35(8/9): 887−899.
    [20] Liu Zhen, Cui Ying, Li Ming, et al. Steady state performance of an axial impulse turbine for oscillating water column wave energy converters[J]. Energy, 2017, 141: 1−10. doi: 10.1016/j.energy.2017.09.068
    [21] Dimakopoulos A S, Cooker M J, Bruce T. The influence of scale on the air flow and pressure in the modelling of oscillating water column wave energy converters[J]. International Journal of Marine Energy, 2017, 19: 272−291. doi: 10.1016/j.ijome.2017.08.004
    [22] Liu Shuxue, Wang Xiantao, Li Muguo, et al. Active absorption wave maker system for irregular-waves[J]. China Ocean Engineering, 2003, 17(2): 203−214.
    [23] Ning Dazhi, Wang Rongquan, Zou Qingping, et al. An experimental investigation of hydrodynamics of a fixed OWC wave energy converter[J]. Applied Energy, 2016, 168: 636−648. doi: 10.1016/j.apenergy.2016.01.107
    [24] Wang Rongquan, Ning Dezhi, Zhang Chongwei, et al. Nonlinear and viscous effects on the hydrodynamic performance of a fixed OWC wave energy converter[J]. Coastal Engineering, 2018, 131: 42−50. doi: 10.1016/j.coastaleng.2017.10.012
    [25] 程蒙召. 岸基式振荡水柱波能装置水动力性能试验研究[D]. 大连: 大连理工大学, 2023.

    Cheng Mengzhao. Experimental investigation on the hydrodynamic performance of the land-based OWC wave energy converter[D]. Dalian: Dalian University of Technology, 2023.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  28
  • HTML全文浏览量:  13
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-18
  • 修回日期:  2023-12-21
  • 网络出版日期:  2024-04-15
  • 刊出日期:  2024-01-01

目录

    /

    返回文章
    返回