A study on bimodal spectral patterns based on fixed-point observation data in Jiangsu sea area
-
摘要: 江苏海域作为全国海上风电重点建设海域,走向远海是未来发展的主趋势,外海开敞海域涌浪成分较多,海浪谱往往以双峰谱的形式出现,因此双峰谱海浪的谱型特征需要进一步深入研究,为海上施工提供参考依据。基于浮标测站2018年全年观测数据,经过异常值检验、双峰谱识别后得到1 223笔双峰谱数据,进而研究江苏海域波浪双峰谱谱型特征,对比不同典型双峰谱谱型并展开实测双峰谱的拟合,提出了修正谱宽参量,探究了修正系数、峰升高因子、谱宽参量间的依赖关系,得到了双峰谱拟合谱型表达式。结果表明:基于北大西洋海域提出Ochi-Hubble谱系及基于挪威海域提出的Torsethaugen谱并不适用于江苏海域双峰谱谱型,本文提出的双峰JONSWAP拟合谱具有自适应性,可以科学合理地描述江苏海域双峰谱谱型,并推广应用于不同风场、地形条件的海域中。
-
关键词:
- 江苏海域 /
- 双峰谱 /
- Ochi-Hubble六参数谱 /
- Torsethaugen双峰谱 /
- 双峰JONSWAP拟合谱
Abstract: As a national key construction sea area, the trend of offshore wind power construction in the Jiangsu sea area towards the open sea is the main trend of future development. The open sea areas have more surge components, and the wave spectrum often appears in the form of bimodal spectrum. Therefore, the wave characteristics of bimodal spectrum waves need further in-depth research to provide reference basis for offshore construction. Based on the observation data of the buoy station throughout 2018, 1223 bimodal spectral data were obtained through outlier testing and bimodal spectral identification. The bimodal spectral characteristics of waves in the Jiangsu sea area were studied, and different typical bimodal spectral types were compared. The fitting of the measured bimodal spectra was carried out, and the corrected spectral width parameters were proposed. The dependency relationship between the correction coefficient, peak rise factor, and spectral width parameters was explored, and the bimodal spectral fitting expression was obtained. The results indicate that the Ochi–Hubble spectrum proposed based on the North Atlantic sea area and the Torsethaugen spectrum proposed based on the Norwegian sea area are not applicable to the bimodal spectrum type in the Jiangsu sea area. The bimodal JONSWAP fitting spectrum proposed in this paper has adaptability and can scientifically and reasonably describe the bimodal spectrum in the Jiangsu sea area, and is widely applied to different wind and terrain conditions in the sea area. -
表 1 双峰谱不同谱型对比DI误差均值
Tab. 1 Comparison of DI error mean for different spectral shapes of the bimodal spectrum
月份 Torsethaugen双峰谱 Ochi-Hubble双峰谱谱系 1 2 3 4 5 6 7 8 9 10 11 1 79.02 113.04 102.85 89.91 95.93 80.79 95.97 167.42 95.88 99.87 394.54 93.25 2 90.91 105.43 84.99 88.02 92.25 82.28 88.18 132.03 88.02 99.89 445.32 84.88 3 95.17 147.02 150.08 90.88 95.95 80.28 96.95 188.59 97.53 99.86 423.48 94.63 4 71.62 128.43 118.17 89.77 95.35 78.45 95.09 181.64 95.78 99.87 420.46 92.36 5 67.66 110.14 120.46 88.76 94.60 80.26 96.70 152.66 93.12 99.87 324.16 90.93 6 63.66 122.07 124.24 90.77 93.58 79.32 91.91 159.33 92.79 99.89 339.74 89.23 7 69.56 115.62 140.09 88.90 94.04 80.97 94.49 155.45 94.89 99.88 323.89 91.63 8 70.67 107.78 141.96 90.27 94.26 81.99 95.22 146.26 95.31 99.89 292.95 92.30 9 79.58 112.15 138.69 89.34 95.25 82.79 95.75 149.03 95.83 99.88 313.80 92.60 10 102.83 121.63 123.84 90.55 95.69 80.47 96.53 173.07 96.56 99.87 381.21 93.68 11 75.95 130.31 118.31 89.27 96.22 77.90 96.65 187.03 96.50 99.86 443.11 94.19 12 76.61 120.25 112.54 89.44 95.40 78.76 94.56 171.41 93.39 99.87 391.99 91.77 平均值 78.60 119.49 123.02 89.66 94.88 80.36 94.83 163.66 94.63 99.88 374.55 91.79 表 2 双峰JONSWAP拟合谱各月误差指标DI及拟合参数均值
Tab. 2 Monthly error index DI and fitting parameter mean of bimodal JONSWAP fitting spectrum
月份 DI误差 低频区 高频区 $ {\alpha _1} $ $ {\gamma _1} $ $ {\alpha _2} $ $ {\gamma _2} $ 1 29.44 0.95 3.09 0.89 2.14 2 21.13 0.80 4.02 0.95 2.10 3 36.63 0.68 2.71 0.95 1.49 4 33.98 0.92 3.18 0.90 1.88 5 27.42 0.86 3.12 0.87 2.31 6 25.78 0.82 2.80 0.87 2.16 7 31.22 0.80 2.75 0.87 2.07 8 27.09 0.86 2.23 0.86 1.95 9 32.32 0.84 2.51 1.01 2.06 10 30.67 0.87 2.84 0.92 1.82 11 31.89 0.89 3.18 0.93 1.97 12 30.80 0.86 2.86 0.85 2.51 平均值 29.86 0.85 2.94 0.91 2.04 -
[1] 丁健, 杜宇. 外海开敞海域双峰谱混合浪对海上风电场施工作业的影响探讨[J]. 中国港湾建设, 2021, 41(8): 20−23, 70.Ding Jian, Du Yu. Discussion on the influence of bimodal spectrum mixed wave on offshore wind farm construction in open seas[J]. China Harbour Engineering, 2021, 41(8): 20−23, 70. [2] Strekalov S S, Tsyploukhin V P, Massel S T. Structure of sea wave frequency spectrum[J]. Coastal Engineering Proceedings, 1972, 1(13): 14. [3] Ochi M K, Hubble E N. Six-parameter wave spectra[J]. Coastal Engineering Proceedings, 1976, 1(15): 17. [4] Soares C G. Representation of double-peaked sea wave spectra[J]. Ocean Engineering, 1984, 11(2): 185−207. doi: 10.1016/0029-8018(84)90019-2 [5] Torsethaugen K, Haver S. Simplified double peak spectral model for ocean waves[C]//Proceedings of the 14th International Offshore and Polar Engineering Conference. Toulon, France: The International Society of Offshore and Polar Engineer, 2004: 76. [6] 宗智, 王轶赓, 顾学康, 等. 近岛礁有理分式波浪谱研究[J]. 水动力学研究与进展, 2018, 33(5): 570−575.Zong Zhi, Wang Yigeng, Gu Xuekang, et al. Study on the rational form of wave spectrum near islands and reefs[J]. Chinese Journal of Hydrodynamics, 2018, 33(5): 570−575. [7] Henriques A C, Guedes Soares C. Fitting a double-peak spectral model to measured wave spectra[C]//Proceedings of the 17th International Conference on Offshore Mechanics and Arctic Engineering. New York: ASME, 1998, 2. [8] Panahi R, Shafieefar M, Ghasemi A. A new method for calibration of unidirectional double-peak spectra[J]. Journal of Marine Science and Technology, 2016, 21(1): 167−178. doi: 10.1007/s00773-015-0341-2 [9] Akbari H, Panahi R, Amani L. A double-peaked spectrum for the northern parts of the Gulf of Oman: revisiting extensive field measurement data by new calibration methods[J]. Ocean Engineering, 2019, 180: 187−198. doi: 10.1016/j.oceaneng.2019.03.060 [10] 刘首华, 陈满春, 董明媚, 等. 一种实用海洋浮标数据异常值质控方法[J]. 海洋通报, 2016, 35(3): 264−270.Liu Shouhua, Chen Manchun, Dong Mingmei, et al. A quality control method for the outlier detection of buoy observations[J]. Marine Science Bulletin, 2016, 35(3): 264−270. [11] 任叙合, 谢波涛, 宋转玲. 南海深水区双峰型海浪谱特征研究[J]. 海洋科学进展, 2014, 32(2): 148−154.Ren Xuhe, Xie Botao, Song Zhuanling. Statistical characteristics of the double-peaked wave spectra in the deep area of the South China Sea[J]. Advances in Marine Science, 2014, 32(2): 148−154. [12] 高晨晨, 陈国平, 尹亚军. 响水海域双峰谱型海浪的统计分析[J]. 水运工程, 2016(3): 23−28.Gao Chenchen, Chen Guoping, Yin Yajun. Statistical analysis of sea waves with double-peaked spectra in Xiangshui sea area[J]. Port and Waterway Engineering, 2016(3): 23−28. [13] Liu P C. A representation for the frequency spectrum of wind-generated waves[J]. Ocean Engineering, 1983, 10(6): 429−441. doi: 10.1016/0029-8018(83)90045-8 [14] 黄培基, 胡泽建. 胶州湾双峰海浪频谱的表示[J]. 海洋学报, 1988, 10(5): 531−537.Huang Peiji, Hu Zejian. Representation of bimodal wave spectra in Jiaozhou Bay[J]. Haiyang Xuebao, 1988, 10(5): 531−537. [15] Golpira A, Panahi R, Shafieefar M. Developing families of Ochi-Hubble spectra for the northern parts of the Gulf of Oman[J]. Ocean Engineering, 2019, 178: 345−356. doi: 10.1016/j.oceaneng.2019.03.011 [16] Panahi R, Ghasemi K A, Shafieefar M. Development of a bi-modal directional wave spectrum[J]. Ocean Engineering, 2015, 105: 104−111. doi: 10.1016/j.oceaneng.2015.06.017 [17] 陈文炜, 刘小龙, 杭涔, 等. Ochi-Hubble双峰谱在近岛礁海域的适用性研究[J]. 中国造船, 2020, 61(1): 120−130.Chen Wenwei, Liu Xiaolong, Hang Cen, et al. Study on applicability of bi-modal wave spectrum in waters near islands and reefs[J]. Shipbuilding of China, 2020, 61(1): 120−130. [18] Hwang P A, Ocampo-Torres F J, García-Nava H. Wind sea and swell separation of 1D wave spectrum by a spectrum integration method[J]. Journal of Atmospheric & Oceanic Technology, 2012, 29(1): 116−128. [19] Hasselmann K, Barnett T P, Bouws E, et al. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP)[J]. Ergänzungsheft zur Deutschen Hydrographischen Zeitschrift, 1973, 8(12): 7−95. [20] Goda Y. A review on statistical interpretation of wave data[J]. Report of the Port & Harbour Research Institute, 1979, 18: 5-32. [21] 沈至淳, 陶爱峰, 李雪丁, 等. 基于实测资料的双峰标准谱研究[J]. 海洋湖沼通报, 2020(1): 9−17.Shen Zhichun, Tao Aifeng, Li Xueding, et al. Study on standard double-peak spectrum based on observed data[J]. Transactions of Oceanology and Limnology, 2020(1): 9−17. [22] 侯一筠, 文圣常. 三参量的风浪频谱[J]. 海洋与湖沼, 1990, 21(6): 495−504.Hou Yijun, Wen Shengchang. Wind wave spectra with three parameters[J]. Oceanologia et Limnologia Sinica, 1990, 21(6): 495−504. -