留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

南海一个罗斯贝标准模态的特征与归因

赵宇慧 马继望 梁湘三

赵宇慧,马继望,梁湘三. 南海一个罗斯贝标准模态的特征与归因[J]. 海洋学报,2023,45(10):31–41 doi: 10.12284/hyxb2023129
引用本文: 赵宇慧,马继望,梁湘三. 南海一个罗斯贝标准模态的特征与归因[J]. 海洋学报,2023,45(10):31–41 doi: 10.12284/hyxb2023129
Zhao Yuhui,Ma Jiwang,Liang Xiangsan. Characteristics and attributions of a Rossby normal mode in the South China Sea[J]. Haiyang Xuebao,2023, 45(10):31–41 doi: 10.12284/hyxb2023129
Citation: Zhao Yuhui,Ma Jiwang,Liang Xiangsan. Characteristics and attributions of a Rossby normal mode in the South China Sea[J]. Haiyang Xuebao,2023, 45(10):31–41 doi: 10.12284/hyxb2023129

南海一个罗斯贝标准模态的特征与归因

doi: 10.12284/hyxb2023129
基金项目: 国家自然科学基金项目(42005052,42230105,41975064);南方海洋科学与工程广东省实验室(珠海)科研项目(313022003,313022005,SML2023SP203);上海市“一带一路”国际联合实验室项目(22230750300);上海市“科技创新行动计划”国际科技合作伙伴项目(21230780200)。
详细信息
    作者简介:

    赵宇慧(1996—),女,山西省平遥县人,博士研究生,研究方向为海洋多尺度动力学。E-mail:yuhuizhao73@foxmail.com

    通讯作者:

    梁湘三(1967—),男,教授,主要从事大气海洋多尺度动力学、定量因果推断、人工智能等方面研究。E-mail: xsliang@fudan.edu.cn

  • 1面板数据是由两个或两个以上不连续时间段内的观测组成的数据。这里计算因果所用的时间序列是由多个时间段内的数据组合而成,故属于面板数据。
  • 中图分类号: P731.21

Characteristics and attributions of a Rossby normal mode in the South China Sea

  • 摘要: 南海是一个准封闭海盆,其本征值问题是理解南海动力学的重要内容。本文利用一种新的泛函工具—多尺度子空间变换,从卫星观测资料中分离得到一个南海本征模态,即罗斯贝标准模态的近似场。发现该模态的周期为6个月左右、波长近250 km,在深水海盆向西传播,这与寿命为3个月左右的南海中尺度涡群体活动特征相一致。在此基础上,本文通过Liang-Kleeman信息流这一严格建立在第一性原理上的定量因果分析工具,探究南海两个最重要外部强迫,即黑潮入侵与南海季风对该罗斯贝标准模态的影响。结果表明二者与该模态均有较强因果关系,但分别影响模态的不同阶段:黑潮入侵主要影响其1/2π和3/2π位相,季风的作用则体现在3/4π位相。二者共同作用,调制该模态在近一个周期内的变化。进一步研究发现,黑潮入侵的过渡态是影响该模态的关键,这时黑潮在南海的分支与流套强度相当,有利于吕宋海峡西部形成不同极性涡旋的排列,从而影响南海内部罗斯贝标准模态。对南海季风而言,冬季风与夏季风的成熟阶段是影响该模态的重要时期,但并非整个南海的季风都发挥作用,泰国湾是季风改变南海罗斯贝标准模态的关键区域,这表明局地的强迫对激发全局模态起作用。
    1)  1面板数据是由两个或两个以上不连续时间段内的观测组成的数据。这里计算因果所用的时间序列是由多个时间段内的数据组合而成,故属于面板数据。
  • 图  1  南海深水海盆平均能量谱

    Fig.  1  Mean power spectrum of the South China Sea deep basin

    图  2  使用MWT得到的 1996年4月12日(a)、1995年6月6日(b)与 2002年2月2日(c)南海中尺度子空间海面高度与相应地转速度的分布

    Fig.  2  Snapshots of the mesoscale-window sea surface height and geostrophic velocity on April 4, 1996 (a), June 6, 1995 (b), and February 2, 2002 (c) obtained from the MWT

    图  3  使用MWT得到的1996年7月22日(a)、1995年9月5日(b)与2002年5月3日(c)南海中尺度子空间海面高度与相应地转速度的分布

    Fig.  3  Snapshots of the mesoscale-window sea surface height and geostrophic velocity on July 22, 1996 (a), September 5, 1995 (b) and May 3, 2002 (c) obtained from the MWT

    图  4  南海罗斯贝标准模态RNM6I随时间的变化

    Fig.  4  Daily time series of the Rossby normal mode RNM6I in the South China Sea

    图  5  中尺度子空间海面高度沿18°N(a)与12°N(b)的时间−经度演变图

    Fig.  5  Time-longitude plots of the mesoscale-window sea surface height along 18°N (a) and 12°N (b)

    图  6  LST超前不同时间时到RNM6I的信息流

    Fig.  6  Time-delayed information flow from LST to RNM6I

    图  7  RNM6I的不同位相合成(a)与LST到不同位相的信息流绝对值(b)

    Fig.  7  Composite of the RNM6I (a) and the absolute phase-dependent information flow from LST (b)

    图  8  RNM6I波峰前1周的海面高度与地转速度合成图

    Fig.  8  Composite map of the sea surface height and geostrophic velocity a week before the RNM6I peaks

    图  9  SCSMI超前不同时间到RNM6I的信息流 (a)与超前82日到不同位相的信息流绝对值(b)

    Fig.  9  Time-delayed information flow from SCSMI to RNM6I (a) and phase-dependent absolute information flow from 82-day-led SCSMI to RNM6I (b)

    图  10  RNM6I到达$3/4{\text{π}} + 2n{\text{π}} $位相前82日南海10 m风场及其旋度在夏季与冬季的合成图

    Fig.  10  Composite maps of the 10 m wind and its vorticity 82 days before the $3/4{\text{π}} + 2n{\text{π}} $ phase of the RNM6I in summer and winter

    图  11  超前82日时经向风场到RNM6I的绝对信息流分布

    Fig.  11  Distribution of the absolute information flow from 82-day-led meridional wind to RNM6I

  • [1] Longuet-Higgins H C. Planetary waves on a rotating sphere[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1964, 279(1379): 446−473.
    [2] Pedlosky J. Geophysical Fluid Dynamics[M]. New York: Springer, 1987.
    [3] Pedlosky J, Spall M. Rossby normal modes in basins with barriers[J]. Journal of Physical Oceanography, 1999, 29(9): 2332−2349. doi: 10.1175/1520-0485(1999)029<2332:RNMIBW>2.0.CO;2
    [4] Pedlosky J. The destabilization of Rossby normal modes by meridional baroclinic shear[J]. Journal of Physical Oceanography, 2002, 32(8): 2418−2423. doi: 10.1175/1520-0485(2002)032<2418:TDORNM>2.0.CO;2
    [5] Ahlquist J E. Normal-mode global Rossby waves: theory and observations[J]. Journal of the Atmospheric Sciences, 1982, 39(2): 193−202. doi: 10.1175/1520-0469(1982)039<0193:NMGRWT>2.0.CO;2
    [6] Ahlquist J E. Climatology of normal mode Rossby waves[J]. Journal of the Atmospheric Sciences, 1985, 42(19): 2059−2068. doi: 10.1175/1520-0469(1985)042<2059:CONMRW>2.0.CO;2
    [7] Hirooka T, Hirota I. Further evidence of normal mode Rossby waves[M]//Plumb R A, Vincent R A. Middle Atmosphere. Basel: Birkhäuser, 1989: 277−289.
    [8] Madden R A. Large-scale, free Rossby waves in the atmosphere—an update[J]. Tellus A: Dynamic Meteorology and Oceanography, 2007, 59(5): 571−590. doi: 10.1111/j.1600-0870.2007.00257.x
    [9] Sassi F, Garcia R R, Hoppel K W. Large-scale Rossby normal modes during some recent northern Hemisphere winters[J]. Journal of the Atmospheric Sciences, 2012, 69(3): 820−839. doi: 10.1175/JAS-D-11-0103.1
    [10] Weijer W, Vivier F, Gille S T, et al. Multiple oscillatory modes of the Argentine basin. Part I: statistical analysis[J]. Journal of Physical Oceanography, 2007, 37(12): 2855−2868. doi: 10.1175/2007JPO3527.1
    [11] Weijer W, Vivier F, Gille S T, et al. Multiple oscillatory modes of the Argentine basin. Part II: the spectral origin of basin modes[J]. Journal of Physical Oceanography, 2007, 37(12): 2869−2881. doi: 10.1175/2007JPO3688.1
    [12] Mensah V, Ohshima K I. Variabilities of the sea surface height in the Kuril Basin of the Sea of Okhotsk: coherent shelf-trapped mode and Rossby normal modes[J]. Journal of Physical Oceanography, 2020, 50(8): 2289−2313. doi: 10.1175/JPO-D-19-0216.1
    [13] Xie Lingling, Zheng Quanan. New insight into the South China Sea: Rossby normal modes[J]. Acta Oceanologica Sinica, 2017, 36(7): 1−3. doi: 10.1007/s13131-017-1077-0
    [14] Xie Lingling, Zheng Quanan, Zhang Shuwen, et al. The Rossby normal modes in the South China Sea deep basin evidenced by satellite altimetry[J]. International Journal of Remote Sensing, 2018, 39(2): 399−417. doi: 10.1080/01431161.2017.1384591
    [15] 郑全安, 谢玲玲, 郑志文, 等. 南海中尺度涡研究进展[J]. 海洋科学进展, 2017, 35(2): 131−158. doi: 10.3969/j.issn.1671-6647.2017.02.001

    Zheng Quanan, Xie Lingling, Zheng Zhiwen, et al. Progress in research of mesoscale eddies in the South China Sea[J]. Advances in Marine Science, 2017, 35(2): 131−158. doi: 10.3969/j.issn.1671-6647.2017.02.001
    [16] Zhang Meng, von Storch H, Chen Xueen, et al. Temporal and spatial statistics of travelling eddy variability in the South China Sea[J]. Ocean Dynamics, 2019, 69(8): 879−898. doi: 10.1007/s10236-019-01282-2
    [17] Huang Runqi, Xie Linging, Zheng Quanan, et al. Statistical analysis of mesoscale eddy propagation velocity in the South China Sea deep basin[J]. Acta Oceanologica Sinica, 2020, 39(11): 91−102. doi: 10.1007/s13131-020-1678-x
    [18] Fang Guohong, Wang Gang, Fang Yue, et al. A review on the South China Sea western boundary current[J]. Acta Oceanologica Sinica, 2012, 31(5): 1−10. doi: 10.1007/s13131-012-0231-y
    [19] Zhang Jinchao, Zhang Zhiwei, Qiu Bo, et al. Seasonal modulation of submesoscale kinetic energy in the upper ocean of the northeastern South China Sea[J]. Journal of Geophysical Research: Oceans, 2021, 126(11): e2021JC017695. doi: 10.1029/2021JC017695
    [20] Liang X S, Anderson D G M. Multiscale window transform[J]. Multiscale Modeling & Simulation, 2007, 6(2): 437−467. doi: 10.1137/06066895X
    [21] Liang X S. Canonical transfer and multiscale energetics for primitive and quasigeostrophic atmospheres[J]. Journal of the Atmospheric Sciences, 2016, 73(11): 4439−4468. doi: 10.1175/JAS-D-16-0131.1
    [22] Granger C W J. Investigating causal relations by econometric models and cross-spectral methods[J]. Econometrica, 1969, 37(3): 424−438. doi: 10.2307/1912791
    [23] Pearl J. Causality: Models, Reasoning, and Inference[M]. 2nd ed. New York: Cambridge University Press, 2009.
    [24] Liang X S. Unraveling the cause-effect relation between time series[J]. Physical Review E, 2014, 90(5): 052150. doi: 10.1103/PhysRevE.90.052150
    [25] Liang X S. Information flow and causality as rigorous notions ab initio[J]. Physical Review E, 2016, 94(5): 052201. doi: 10.1103/PhysRevE.94.052201
    [26] Liang X S. Normalized multivariate time series causality analysis and causal graph reconstruction[J]. Entropy, 2021, 23(6): 679. doi: 10.3390/e23060679
    [27] Hu Jianyu, Kawamura H, Hong Huasheng, et al. A review on the currents in the South China Sea: seasonal circulation, South China Sea warm current and Kuroshio intrusion[J]. Journal of Oceanography, 2000, 56(6): 607−624. doi: 10.1023/a:1011117531252
    [28] Gan Jianping, Li H, Curchitser E N, et al. Modeling South China Sea circulation: response to seasonal forcing regimes[J]. Journal of Geophysical Research: Oceans, 2006, 111(C6): C06034. doi: 10.1029/2005JC003298
    [29] Qu Tangdong. Upper-layer circulation in the South China Sea[J]. Journal of Physical Oceanography, 2000, 30(6): 1450−1460. doi: 10.1175/1520-0485(2000)030<1450:ULCITS>2.0.CO;2
    [30] Xue Huijie, Chai Fei, Pettigrew N, et al. Kuroshio intrusion and the circulation in the South China Sea[J]. Journal of Geophysical Research: Oceans, 2004, 109(C2): C02017. doi: 10.1029/2002JC001724
    [31] Yang Haijun, Liu Qinyu, Liu Zhengyu, et al. A general circulation model study of the dynamics of the upper ocean circulation of the South China Sea[J]. Journal of Geophysical Research: Oceans, 2002, 107(C7): 3085. doi: 10.1029/2001JC001084
    [32] Yuan Dongliang. A numerical study of the South China Sea deep circulation and its relation to the Luzon Strait transport[J]. Acta Oceanologica Sinica, 2002, 21(2): 187−202.
    [33] Tian Jiwei, Yang Qingxuan, Liang Xinfeng, et al. Observation of Luzon Strait transport[J]. Geophysical Research Letters, 2006, 33(19): L19607. doi: 10.1029/2006GL026272
    [34] Yang Qingxuan, Tian Jiwei, Zhao Wei. Observation of Luzon Strait transport in summer 2007[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2010, 57(5): 670−676. doi: 10.1016/j.dsr.2010.02.004
    [35] Zhang Zhengguang, Zhao Wei, Liu Qinyu. Sub-seasonal variability of Luzon Strait transport in a high resolution global model[J]. Acta Oceanologica Sinica, 2010, 29(3): 9−17. doi: 10.1007/s13131-010-0032-0
    [36] Rong Yineng, Liang X S. Panel data causal inference using a rigorous information flow analysis for homogeneous, independent and identically distributed datasets[J]. IEEE Access, 2021, 9: 47266−47274. doi: 10.1109/ACCESS.2021.3068273
    [37] Nan Feng, Xue Huijie, Chai Fei, et al. Identification of different types of Kuroshio intrusion into the South China Sea[J]. Ocean Dynamics, 2011, 61(9): 1291−1304. doi: 10.1007/s10236-011-0426-3
    [38] Liu Qinyu, Yang Haijun, Liu Zhengyu. Seasonal features of the Sverdrup circulation in the South China Sea[J]. Progress in Natural Science, 2001, 11(3): 203−206.
    [39] Yang Haiyuan, Wu Lixin, Sun Shantong, et al. Low-frequency variability of monsoon-driven circulation with application to the South China Sea[J]. Journal of Physical Oceanography, 2015, 45(6): 1632−1650. doi: 10.1175/JPO-D-14-0212.1
    [40] Yuan Dongliang, Han Weiqing, Hu Dunxin. Anti-cyclonic eddies northwest of Luzon in summer-fall observed by satellite altimeters[J]. Geophysical Research Letters, 2007, 34(13): L13610. doi: 10.1029/2007GL029401
    [41] Wang Guihua, Chen Dake, Su Jilan. Winter eddy genesis in the eastern South China Sea due to orographic wind jets[J]. Journal of Physical Oceanography, 2008, 38(3): 726−732. doi: 10.1175/2007JPO3868.1
    [42] Chu P C, Chen Yuchun, Lu Shihua. Wind-driven South China Sea deep basin warm-core/cool-core eddies[J]. Journal of Oceanography, 1998, 54(4): 347−360. doi: 10.1007/BF02742619
    [43] Wang Bin, Huang Fei, Wu Zhiwei, et al. Multi-scale climate variability of the South China Sea monsoon: a review[J]. Dynamics of Atmospheres and Oceans, 2009, 47(1/3): 15−37. doi: 10.1016/j.dynatmoce.2008.09.004
    [44] Xie Shangping, Chang C H, Xie Qiang, et al. Intraseasonal variability in the summer South China Sea: wind jet, cold filament, and recirculations[J]. Journal of Geophysical Research: Oceans, 2007, 112(C10): C10008. doi: 10.1029/2007JC004238
    [45] Wang Guihua, Wang Chunzai, Huang Ruixin. Interdecadal variability of the eastward current in the South China Sea associated with the summer Asian monsoon[J]. Journal of Climate, 2010, 23(22): 6115−6123. doi: 10.1175/2010JCLI3607.1
    [46] Ngo M H, Hsin Y C. Impacts of wind and current on the interannual variation of the summertime upwelling off southern Vietnam in the South China Sea[J]. Journal of Geophysical Research: Oceans, 2021, 126(6): e2020JC016892. doi: 10.1029/2020JC016892
  • 加载中
图(11)
计量
  • 文章访问数:  207
  • HTML全文浏览量:  111
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-24
  • 修回日期:  2023-05-31
  • 网络出版日期:  2023-11-06
  • 刊出日期:  2023-10-30

目录

    /

    返回文章
    返回