留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

早全新世白令海北部陆坡沉积环境快速变化

林锦辉 邹建军 石学法 朱爱美 豆汝席 董智 冯旭光 刘焱光 GorbarenkoSergey

林锦辉,邹建军,石学法,等. 早全新世白令海北部陆坡沉积环境快速变化[J]. 海洋学报,2023,45(11):45–61 doi: 10.12284/hyxb2023124
引用本文: 林锦辉,邹建军,石学法,等. 早全新世白令海北部陆坡沉积环境快速变化[J]. 海洋学报,2023,45(11):45–61 doi: 10.12284/hyxb2023124
Lin Jinhui,Zou Jianjun,Shi Xuefa, et al. Rapid changes in sedimentary environment on the northern slope of the Bering Sea during the early Holocene[J]. Haiyang Xuebao,2023, 45(11):45–61 doi: 10.12284/hyxb2023124
Citation: Lin Jinhui,Zou Jianjun,Shi Xuefa, et al. Rapid changes in sedimentary environment on the northern slope of the Bering Sea during the early Holocene[J]. Haiyang Xuebao,2023, 45(11):45–61 doi: 10.12284/hyxb2023124

早全新世白令海北部陆坡沉积环境快速变化

doi: 10.12284/hyxb2023124
基金项目: 国家自然科学基金项目(42276079,41876065);崂山实验室科技创新项目(LSKJ202204203);山东省泰山学者攀登计划项目( tspd 20181216)。
详细信息
    作者简介:

    林锦辉(1995—),男,广东省广州市人,主要从事海洋和古气候研究。E-mail:jhlin@fio.org.cn

    通讯作者:

    邹建军(1979—),男,博士,研究员,主要从事海洋沉积和古气候研究。E-mail:zoujianjun@fio.org.cn

    石学法(1965—),男,博士,研究员,主要从事海洋沉积和古气候研究。E-mail:xfshi@fio.org.cn

  • 中图分类号: P722.1;P736.21+3

Rapid changes in sedimentary environment on the northern slope of the Bering Sea during the early Holocene

  • 摘要: 理解增暖背景下海洋环境的演化过程是海洋学和气候学一项重要的研究内容。在地质时期,地球经历了多次增暖时段(包括早全新世),这为认识海洋环境演化过程提供了重要参考。早全新世全球气候经历了快速增暖,并伴随着冰原融化和海平面快速上升,对包括白令海在内的高纬边缘海的沉积过程和海洋环境产生显著影响。白令海发育宽阔的大陆架,毗邻北美大陆,接受来自育空河、阿纳德尔河和库斯科维姆河物质的供给。目前我们对白令海如何响应早全新世气候的认识还存在明显不足。本研究对位于白令海北部陆坡LV63-19-3岩心沉积物中陆源碎屑组份进行了高分辨率调查,结合沉积年龄模型,研究了早中全新世(距今11.7~5.5 ka)白令海北部陆坡陆源沉积演化过程。研究结果显示,在距今11.5~11 ka,白令海北部陆坡沉积速率高达392.9 cm/ka,在距今约9.7 ka以后降至17.2 cm/ka。在距今11~10.7 ka,发现一层厚约40 cm的暗色纹层状沉积层。在高沉积速率时段,沉积物平均粒径较细,距今9 ka以来平均粒径逐渐增大。主微量元素分析结果表明,陆源碎屑沉积物母岩性质以长英质沉积物为主,并存在少量火山碎屑源贡献。白令海北部陆坡高沉积速率事件对应于冰原融水脉冲(MWP)-1B事件(距今11.4~11.1 ka),并导致白令海陆坡硅质生产力勃发。在距今11~10.7 ka研究区春夏季海冰覆盖增加抑制表层水体氧供给,夏、秋季持续冰川融水和高表层生产力进一步加剧了水体层化和海洋内部消耗,共同促进了纹层状沉积层的形成。距今9 ka以来白令海季节性海冰活动增强,但是陆源碎屑物质质量累积速率则逐渐减小,表明随着海平面上升,供给到研究区的陆源物质减少。我们认为早全新世白令海北部陆坡沉积环境快速变化是海平面、冰融水脉冲事件和季节性海冰活动共同作用的结果,实际上受高纬日射量、北美大陆冰原融化和全球气候变化控制。
  • 图  1  研究站位和白令海现代表层环流示意图

    彩色实线表示白令海表层环流;黑色虚线表示末次盛冰期白令海海岸线,此时白令陆架暴露[35];蓝色虚线表示白令海低海平面时期河流的潜在路径[35]

    Fig.  1  Study location and schematic of modern surface circulation in the Bering Sea

    The solid colored line indicates the surface circulation of the Bering Sea; the black dashed line indicates the Bering Sea coastline during the Last Glacial Maximum, when the Bering Shelf was exposed[35]; the blue dashed line indicates the potential path of the river during low sea level in the Bering Sea[35]

    图  2  LV63-19-3与SO202-18-6岩心[28]岩性比对(a),LV63-19-3和SO202-18-6岩心[28]基于XRF扫描的Ca/Ti比值比对(b)

    黑线是原始数据,红线是10点滑动平均。浅绿条带代表LV63-19-3岩心与SO202-18-6岩心年代控制点比对

    Fig.  2  Lithology correlation between cores LV63-19-3 and SO202-18-6[28] (a), and comparison of Ca/Ti ratios based on XRF core scanning from cores LV63-19-3 and SO202-18-6[28] (b)

    The black line is the original data and the red line is the 10-point moving average. The light green band represents the comparison of age control points between Core LV63-19-3 and Core SO202-18-6

    图  3  LV63-19-3岩心沉积物粒度和相关参数时间序列

    垂直灰色阴影条带表示纹层状沉积层

    Fig.  3  Time series of sediments grain size and associated parameters in Core LV63-19-3

    Vertical gray bar indicates laminated sediments

    图  4  线性相关(a)、角度(b)和粒度端元频率分布(c)

    Fig.  4  Linear correlation (a), angle of end members (b), and frequency distributions of sediment grain size endmember (c)

    图  5  主微量元素含量的时间序列(a)和主微量元素与Al比值时间序列(b)

    垂直灰色阴影条带表示纹层状沉积层

    Fig.  5  Time series of major and minor element contents (a) and the ratio of the major and minor elements to Al (b)

    Vertical gray bar indicates laminated sediments

    图  6  稀土元素(REE)含量及其参数时间序列

    垂直灰色阴影条带表示纹层状沉积层;(La/Sm)NASC、(Ga/Yb)NASC和(La/Yb)NASC为北美页岩[41]标准化计算结果;δCe和δEu为北美页岩标准化计算结果: ${ \mathrm{\delta }\mathrm{Ce}=\dfrac{{\mathrm{Ce}}_{\mathrm{NASC}}}{\sqrt{\left({\mathrm{La}}_{\mathrm{NASC}}\right)\cdot \left({\mathrm{Pr}}_{\mathrm{NASC}}\right)}}}$, ${\mathrm{\delta }\mathrm{Eu}=\dfrac{{\mathrm{Eu}}_{\mathrm{NASC}}}{\sqrt{\left({\mathrm{Sm}}_{\mathrm{NASC}}\right)\cdot \left({\mathrm{Gd}}_{\mathrm{NASC}}\right)}}}$

    Fig.  6  Time series of rare earth element (REE) parameters

    Vertical gray bar indicates laminated sediments; (La/Sm)NASC、(Ga/Yb)NASC and (La/Yb)NASC are normalized for North American shale composite [41]; δCe and δEu are normalized for North American shale composite: ${ \delta {\rm{Ce}}= \dfrac{{\rm{Ce}}_{\rm{NASC}}}{\sqrt{\left({\mathrm{La}}_{\mathrm{NASC}}\right)\cdot \left({\mathrm{Pr}}_{\mathrm{NASC}}\right)}} }$, ${\delta \mathrm{Eu}= \dfrac{{\mathrm{Eu}}_{\mathrm{NASC}}}{\sqrt{\left({\mathrm{Sm}}_{\mathrm{NASC}}\right)\cdot\left({\mathrm{Gd}}_{\mathrm{NASC}}\right)}}}$

    图  7  因子F1与F2散点图

    Fig.  7  Scatter plot between F1 and F2

    图  8  源区沉积物地球化学判别图

    Fig.  8  Geochemical discrimination plots to obtain possible provenances of sediments

    图  9  北美页岩标准化稀土配分模式

    育空河河口沉积物数据引自文献[33],白令海北坡沉积物数据引自文献[50],阿留申岛弧火成岩数据引自文献[51]

    Fig.  9  North American shale composite (NASC) normalized rare earth elements patterns

    The data for Yukon River Estuary sediments were cited from reference [33],sediments from the northern slope of the Bering Sea were cited from reference [50], and Aleutian Island Arc igneous rock were cited from reference [51]

    图  10  LV63-19-3岩心(La/Sm)NASC与(Ga/Yb)NASC、(La/Yb)NASC与LREE/HREE散点图

    育空河河口沉积物数据引自文献[33],阿留申岛弧火成岩数据引自文献[51]

    Fig.  10  Scatter plots between (La/Sm)NASC vs. (Ga/Yb)NASC, (La/Yb)NASC vs. LREE/HREE in Core LV63-19-3

    The data for Yukon River Estuary sediments were cited from reference [33], Aleutian Island Arc igneous rock were cited from reference [51]

    图  11  早全新世白令海陆坡沉积动力时间序列

    a. 65°N夏季太阳辐射量 [2];b. SO202-18-6岩心和SO201-2-77KL海表温度[24];c. LV63-19-3岩心平均粒径;d. LV63-19-3岩心Zr/Sc比值;e. LV63-19-3岩心EM3含量;f. BR-07岩心PBIP25和PDIP25指数[56];g. LV63-19-3岩心EM1含量;垂直橙色阴影条带表示HTM距今(11~9 ka)时期[30];垂直深色阴影条带表示冰融水(MWP)-1B事件(距今11.4~11.1 ka)[57] ;虚线标注的垂直浅色阴影条带表示纹层状沉积层

    Fig.  11  Time series of sedimentary dynamics on the north slope of the Bering Sea during the early Holocene

    a. Solar insolation in summer at 65°N [2]; b. Bering Sea sea surface temperature based on cores SO202-18-6 and SO201-2-77KL[24]; c. average particle size in Core LV63-19-3; d. Zr/Sc ratios in Core LV63-19-3; e. contents of EM3 in Core LV63-19-3; f. Core BR07 PBIP25 and PDIP25 indices[56]; g. contents of EM1 in Core LV63-19-3; orange vertical bar indicates the HTM (11–9 ka BP) period[30]; dark vertical bar indicates Meltwater Pulse (MWP)-1B event (11.4–11.1 ka BP) [57]; light vertical bar indicates laminated sediments

    图  12  早全新世白令海陆坡LV63-19-3岩心沉积记录与其他古气候记录对比

    a. 65°N夏季太阳辐射量[2];b. 格陵兰岛NGRIP冰芯δ18O记录[60];c. 全球海平面和海平面变化速率[31];d. SO202-18-6岩心和SO201-2-77KL海表温度[24];e. LV63-19-3岩心ΣREE质量通量;f. LV63-19-3岩心因子1(F1)得分;g. LV63-19-3岩心EM1含量;h. LV63-19-3岩心因子2(F2)得分;i. SO202-18-6岩心菜籽甾醇含量;j.LV63-19-3岩心EM3含量;k. LV63-19-3岩心Zr/Sc比值;垂直橙色阴影条带表示HTM(距今11~9 ka)时期[30];垂直深色阴影条带表示冰融水(MWP)-1B事件(距今11.4~11.1 ka)[57];虚线标注的垂直浅色阴影条带表示纹层状沉积层

    Fig.  12  Comparison between sedimentary records of Core LV63-19-3 of the Bering Sea during the early Holocene and other paleoclimate records

    a. Solar insolation in summer at 65°N [2]; b. greenland NGRIP ice core δ18O record[60]; c. global sea level and rate of sea level change[31]; d. Bering Sea sea surface temperature based on cores SO202-18-6 and SO201-2-77KL[24]; e. REEMARS in Core LV63-19-3; f. F1 factor score in Core LV63-19-3; g. contents of EM1 in Core LV63-19-3; h. F2 factor score in Core LV63-19-3; i. contents of Dinosterol (ug/g TOC) in Core SO202-18-6 ; j. contents of EM3 in Core LV63-19-3; k. Zr/Sc ratios in Core LV63-19-3; orange vertical bar indicates the HTM (11–9 ka BP) period[30]; dark vertical bar indicates Meltwater Pulse (MWP)-1B events (11.4–11.1 ka BP) [57]; light vertical bar indicates laminated sediments

    表  1  LV63-19-3 岩心的年代控制点

    Tab.  1  Age control points of Core LV63-19-3

    层位/
    cm
    测试材料和方法AMS 14C
    年龄/a
    ΔR/a日历
    年龄/a
    沉积速率/
    (cm·ka−1)
    80底栖贝壳碎片6 720 ± 304006 564
    135Neogloboquadrina pachyderma9 600 ± 304009 76416.8
    200Neogloboquadrina pachyderma10 290 ± 3040010 71068.7
    240纹层比对[28]10 450 ± 4040010 956162.6
    462XRF Ca/Ti比对[28]10 850 ± 2540011 521392.9
      注:“−”代表未计算沉积速率。
    下载: 导出CSV

    表  2  LV63-19-3 岩心粒度端元参数特征

    Tab.  2  Characteristics of the grain size of modeled end member of Core LV63-19-3

    端元平均粒径/μm分选系数偏态峰态黏土/%粉砂/%砂/%
    EM14.293.480.633.2254.2243.202.59
    EM219.522.34−0.062.734.0388.937.05
    EM364.241.89−0.623.520.0449.2150.75
    下载: 导出CSV

    表  3  LV63-19-3岩心元素和平均粒径相关系数(R2)分析

    Tab.  3  Correlation analysis for elements and mean particle size in Core LV63-19-3

    AlFeCaKTiMgRbScCoThVLiNbCrTaSrZr
    Al1.00
    Fe0.911.00
    Ca0.010.031.00
    K1.000.880.031.00
    Ti1.000.780.010.871.00
    Mg1.001.000.120.770.641.00
    Rb0.760.800.100.850.750.791.00
    Sc0.770.830.070.800.730.780.871.00
    Co0.780.860.100.800.680.910.900.841.00
    Th0.610.640.080.720.690.630.870.720.781.00
    V0.750.790.160.780.600.890.880.780.910.731.00
    Li0.580.610.090.700.720.590.870.710.750.870.691.00
    Nb0.610.660.170.650.580.790.840.660.860.790.880.761.00
    Cr0.440.500.260.500.380.690.670.500.710.640.810.600.851.00
    Ta0.260.280.120.300.300.350.440.330.420.500.430.450.510.411.00
    Sr0.070.180.600.140.080.290.380.300.370.340.350.400.350.330.261.00
    Zr0.010.170.130.110.040.290.250.200.310.150.280.210.230.230.100.091.00
    平均粒径0.770.770.080.800.770.740.870.800.830.820.780.820.820.730.540.370.16
    下载: 导出CSV

    表  4  LV63-19-3 岩心沉积物元素因子旋转成分矩阵

    Tab.  4  Rotated composition matrix of elemental factors of Core LV63-19-3

    元素因子1(F1)因子2(F2)
    Al0.9640.024
    K0.9600.107
    Fe0.9350.161
    Rb0.9120.368
    Sc0.9010.273
    Co0.8970.389
    Th0.8720.336
    Mg0.8670.354
    V0.8630.430
    Li0.8390.383
    ΣREE0.8340.197
    Nb0.8180.496
    Cr0.6930.572
    Ta0.5780.438
    Sr−0.291−0.883
    Ca−0.011−0.812
    Zr−0.274−0.663
    方差/%61.6121.46
    累计方差/%61.6183.07
      注:加粗字体表示与因子显著相关的载荷值。
    下载: 导出CSV
  • [1] IPCC. Climate change 2014: The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [M]. Cambridge: Cambridge University Press, 2014.
    [2] Berger A, Loutre M F. Insolation values for the climate of the last 10 million years[J]. Quaternary Science Reviews, 1991, 10(4): 297−317. doi: 10.1016/0277-3791(91)90033-Q
    [3] Rogelj J, Den Elzen M, Höhne N, et al. Paris Agreement climate proposals need a boost to keep warming well below 2℃[J]. Nature, 2016, 534(7609): 631−639. doi: 10.1038/nature18307
    [4] IPCC. Climate change 2021: The Physical Science Basis: Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2021.
    [5] IPCC. Climate change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2007.
    [6] Springer A M, Mcroy C P, Flint M V. The Bering Sea Green Belt: shelf-edge processes and ecosystem production[J]. Fisheries Oceanography, 1996, 5(3/4): 205−223. doi: 10.1111/j.1365-2419.1996.tb00118.x
    [7] Pelto B M. Sedimentological, Geochemical and Isotopic Evidence for the Establishment of Modern Circulation through the Bering Strait and Depositional Environment History of the Bering and Chukchi Seas during the Last Deglaciation[D]. Amherst: University of Massachusetts Amherst, 2014.
    [8] Broecker W S, Peng T H, Jouzel J, et al. The magnitude of global fresh-water transports of importance to ocean circulation[J]. Climate Dynamics, 1990, 4(2): 73−79. doi: 10.1007/BF00208902
    [9] Wijffels S E, Schmitt R W, Bryden H L, et al. Transport of freshwater by the oceans[J]. Journal of Physical Oceanography, 1992, 22(2): 155−162. doi: 10.1175/1520-0485(1992)022<0155:TOFBTO>2.0.CO;2
    [10] Johannessen O M, Muench R D, Overland J E. The Polar Oceans and Their Role in Shaping the Global Environment: the Nansen Centennial Volume[M]. Washington DC, USA: American Geophysical Union, 1994.
    [11] Keigwin L D, Cook M S. A role for North Pacific salinity in stabilizing North Atlantic climate[J]. Paleoceanography, 2007, 22(3): PA3102.
    [12] Stabeno P J, Bond N A, Kachel N B, et al. On the temporal variability of the physical environment over the south-eastern Bering Sea[J]. Fisheries Oceanography, 2001, 10(1): 81−98. doi: 10.1046/j.1365-2419.2001.00157.x
    [13] Sun Yechen, Xiao Wenshen, Wang Rujian, et al. Changes in sediment provenance and ocean circulation on the northern slope of the Bering Sea since the last deglaciation[J]. Marine Geology, 2021, 436: 106492. doi: 10.1016/j.margeo.2021.106492
    [14] Rella S F, Tada R, Nagashima K, et al. Abrupt changes of intermediate water properties on the northeastern slope of the Bering Sea during the last glacial and deglacial period[J]. Paleoceanography, 2012, 27(3): PA3203.
    [15] Brunelle B G, Sigman D M, Jaccard S L, et al. Glacial/interglacial changes in nutrient supply and stratification in the western subarctic North Pacific since the penultimate glacial maximum[J]. Quaternary Science Reviews, 2010, 29(19/20): 2579−2590. doi: 10.1016/j.quascirev.2010.03.010
    [16] Nakatsuka T, Watanabe K, Handa N, et al. Glacial to interglacial surface nutrient variations of Bering Deep Basins recorded by δ13C and δ15N of sedimentary organic matter[J]. Paleoceanography and Paleoclimatology, 1995, 10(6): 1047−1061.
    [17] Gorbarenko S A, Basov I A, Chekhovskaya M P, et al. Orbital and millennium scale environmental changes in the southern Bering Sea during the last glacial-Holocene: Geochemical and paleontological evidence[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2005, 52(16/18): 2174−2185. doi: 10.1016/j.dsr2.2005.08.005
    [18] Okazaki Y, Takahashi K, Asahi H, et al. Productivity changes in the Bering Sea during the late Quaternary[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2005, 52(16/18): 2150−2162. doi: 10.1016/j.dsr2.2005.07.003
    [19] Brunelle B G, Sigman D M, Cook M S, et al. Evidence from diatom-bound nitrogen isotopes for subarctic Pacific stratification during the last ice age and a link to North Pacific denitrification changes[J]. Paleoceanography, 2007, 22(1): PA1215.
    [20] Caissie B E, Brigham-Grette J, Lawrence K T, et al. Last Glacial Maximum to Holocene sea surface conditions at Umnak Plateau, Bering Sea, as inferred from diatom, alkenone, and stable isotope records[J]. Paleoceanography, 2010, 25(1): PA1206.
    [21] Kim S, Khim B K, Uchida M, et al. Millennial-scale paleoceanographic events and implication for the intermediate-water ventilation in the northern slope area of the Bering Sea during the last 71 kyrs[J]. Global and Planetary Change, 2011, 79(1/2): 89−98.
    [22] Riethdorf J R, Thibodeau B, Ikehara M, et al. Surface nitrate utilization in the Bering Sea since 180 ka BP: Insight from sedimentary nitrogen isotopes[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2016, 125−126: 163−176. doi: 10.1016/j.dsr2.2015.03.007
    [23] Méheust M, Fahl K, Stein R. Variability in modern sea surface temperature, sea ice and terrigenous input in the sub-polar North Pacific and Bering Sea: Reconstruction from biomarker data[J]. Organic Geochemistry, 2013, 57: 54−64. doi: 10.1016/j.orggeochem.2013.01.008
    [24] Méheust M, Stein R, Fahl K, et al. Sea-ice variability in the subarctic North Pacific and adjacent Bering Sea during the past 25 ka: New insights from IP25 and $ {\rm{U}}^{k'} _{37} $ proxy records[J]. Arktos, 2018, 4(1): 1−19.
    [25] Feely R A, Sabine C L, Lee K, et al. In situ calcium carbonate dissolution in the Pacific Ocean[J]. Global Biogeochemical Cycles, 2002, 16(4): 1144.
    [26] Pelto B M, Caissie B E, Petsch S T, et al. Oceanographic and climatic change in the Bering Sea, last glacial maximum to Holocene[J]. Paleoceanography and Paleoclimatology, 2018, 33(1): 93−111. doi: 10.1002/2017PA003265
    [27] Cook M S, Keigwin L D, Sancetta C A. The deglacial history of surface and intermediate water of the Bering Sea[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2005, 52(16/18): 2163−2173. doi: 10.1016/j.dsr2.2005.07.004
    [28] Kuehn H, Lembke-Jene L, Gersonde R, et al. Laminated sediments in the Bering Sea reveal atmospheric teleconnections to Greenland climate on millennial to decadal timescales during the last deglaciation[J]. Climate of the Past, 2014, 10(6): 2215−2236. doi: 10.5194/cp-10-2215-2014
    [29] Zheng Yan, van Geen A, Anderson R F, et al. Intensification of the northeast Pacific oxygen minimum zone during the Bölling-Alleröd warm period[J]. Paleoceanography, 2000, 15(5): 528−536. doi: 10.1029/1999PA000473
    [30] Kaufman D S, Ager T A, Anderson N J, et al. Holocene thermal maximum in the Western Arctic (0–180°W)[J]. Quaternary Science Reviews, 2004, 23(5/6): 529−560. doi: 10.1016/j.quascirev.2003.09.007
    [31] Lambeck K, Rouby H, Purcell A, et al. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(43): 15296−15303.
    [32] VanLaningham S, Pisias N G, Duncan R A, et al. Glacial-interglacial sediment transport to the Meiji Drift, Northwest Pacific Ocean: evidence for timing of Beringian outwashing[J]. Earth and Planetary Science Letters, 2009, 277(1/2): 64−72. doi: 10.1016/j.jpgl.2008.09.033
    [33] Asahara Y, Takeuchi F, Nagashima K, et al. Provenance of terrigenous detritus of the surface sediments in the Bering and Chukchi Seas as derived from Sr and Nd isotopes: Implications for recent climate change in the Arctic regions[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2012, 61: 155−171.
    [34] Keigwin L D, Donnelly J P, Cook M S, et al. Rapid sea-level rise and Holocene climate in the Chukchi Sea[J]. Geology, 2006, 34(10): 861−864. doi: 10.1130/G22712.1
    [35] Meyer V D, Hefter J, Köhler P, et al. Permafrost-carbon mobilization in Beringia caused by deglacial meltwater runoff, sea-level rise and warming[J]. Environmental Research Letters, 2019, 14(8): 085003. doi: 10.1088/1748-9326/ab2653
    [36] Heaton T J, Köhler P, Butzin M, et al. Marine20—the marine radiocarbon age calibration curve (0–55, 000 cal BP)[J]. Radiocarbon, 2020, 62(4): 779−820. doi: 10.1017/RDC.2020.68
    [37] Weltje G J. End-member modeling of compositional data: Numerical-statistical algorithms for solving the explicit mixing problem[J]. Mathematical Geology, 1997, 29(4): 503−549. doi: 10.1007/BF02775085
    [38] Weltje G J, Prins M A. Muddled or mixed? Inferring palaeoclimate from size distributions of deep-sea clastics[J]. Sedimentary Geology, 2003, 162(1/2): 39−62. doi: 10.1016/S0037-0738(03)00235-5
    [39] Paterson G A, Heslop D. New methods for unmixing sediment grain size data[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(1/2): 4494−4506.
    [40] 豆汝席, 邹建军, 石学法, 等. 3万年以来日本海西部海冰活动变化[J]. 第四纪研究, 2020, 40(3): 690−703.

    Dou Ruxi, Zou Jianjun, Shi Xuefa, et al. Reconstructed changes in sea ice in the western Sea of Japan over the last 30 000 years[J]. Quaternary Sciences, 2020, 40(3): 690−703.
    [41] Gromet L P, Haskin L A, Korotev R L, et al. The “North American shale composite”: Its compilation, major and trace element characteristics[J]. Geochimica et Cosmochimica Acta, 1984, 48(12): 2469−2482. doi: 10.1016/0016-7037(84)90298-9
    [42] 杨守业, 李从先. REE示踪沉积物物源研究进展[J]. 地球科学进展, 1999, 14(2): 164−167.

    Yang Shouye, Li Congxian. Reseach progress in REE teracer for sediment source[J]. Advance in Earth Sciences, 1999, 14(2): 164−167.
    [43] 陈志华, 石学法, 韩贻兵, 等. 北冰洋西部表层沉积物粘土矿物分布及环境指示意义[J]. 海洋科学进展, 2004, 22(4): 446−454.

    Chen Zhihua, Shi Xuefa, Han Yibin, et al. Clay mineral distributions in surface sediments from the western arctic ocean and their implications for sediment environments[J]. Advances in Marine Science, 2004, 22(4): 446−454.
    [44] Talley L D. An Okhotsk Sea water anomaly: implications for ventilation in the North Pacific[J]. Deep-Sea Research Part A: Oceanographic Research Papers, 1991, 38: S171−S190. doi: 10.1016/S0198-0149(12)80009-4
    [45] Lembke-Jene L, Tiedemann R, Nürnberg D, et al. Deglacial variability in Okhotsk Sea Intermediate Water ventilation and biogeochemistry: Implications for North Pacific nutrient supply and productivity[J]. Quaternary Science Reviews, 2017, 160: 116−137. doi: 10.1016/j.quascirev.2017.01.016
    [46] 朱爱美, 刘季花, 邹建军, 等. 亚北极太平洋边缘海表层沉积物地球化学特征[J]. 海洋科学进展, 2019, 37(4): 601−612.

    Zhu Aimei, Liu Jihua, Zou Jianjun, et al. Characteristics of sedimentary geochemistry of surface sediments in the subarctic Pacific marginal sea[J]. Advance in Marine Science, 2019, 37(4): 601−612.
    [47] Roser B P, Korsch R J. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data[J]. Chemical Geology, 1988, 67(1/2): 119−139. doi: 10.1016/0009-2541(88)90010-1
    [48] Elderfield H, Upstill-Goddard R, Sholkovitz E R. The rare earth elements in rivers, estuaries, and coastal seas and their significance to the composition of ocean waters[J]. Geochimica et Cosmochimica Acta, 1990, 54(4): 971−991. doi: 10.1016/0016-7037(90)90432-K
    [49] Gaillardet J, Viers J, Dupré B. Trace elements in river waters[J]. Treatise on Geochemistry, 2003, 5: 225−272.
    [50] Serno S, Winckler G, Anderson R F, et al. Eolian dust input to the Subarctic North Pacific[J]. Earth and Planetary Science Letters, 2014, 387: 252−263. doi: 10.1016/j.jpgl.2013.11.008
    [51] McCulloch M T, Perfit M R. 143Nd/144Nd, 87Sr/86Sr and trace element constraints on the petrogenesis of Aleutian island arc magmas[J]. Earth and Planetary Science Letters, 1981, 56: 167−179. doi: 10.1016/0012-821X(81)90124-2
    [52] 沈兴艳, 万世明. 日本海第四纪沉积记录及其海陆联系的研究进展[J]. 海洋地质与第四纪地质, 2015, 35(6): 139−151. doi: 10.16562/j.cnki.0256-1492.2015.06.015

    Shen Xingyan, Wan Shiming. Research progress of quaternary depositional records of the Japan Sea and its implications for the linkages to the Asian continent[J]. Marine Geology & Quaternary Geology, 2015, 35(6): 139−151. doi: 10.16562/j.cnki.0256-1492.2015.06.015
    [53] Nagashima K, Asahara Y, Takeuchi F, et al. Contribution of detrital materials from the Yukon River to the continental shelf sediments of the Bering Sea based on the electron spin resonance signal intensity and crystallinity of quartz[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2012, 61−64: 145−154. doi: 10.1016/j.dsr2.2011.12.001
    [54] Domack E, Duran D, Leventer A, et al. Stability of the Larsen B ice shelf on the Antarctic Peninsula during the Holocene epoch[J]. Nature, 2005, 436(7051): 681−685. doi: 10.1038/nature03908
    [55] Peltier W R, Fairbanks R G. Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record[J]. Quaternary Science Reviews, 2006, 25(23/24): 3322−3337. doi: 10.1016/j.quascirev.2006.04.010
    [56] Ruan Jiaping, Huang Yuanhui, Shi Xuefa, et al. Holocene variability in sea surface temperature and sea ice extent in the northern Bering Sea: a multiple biomarker study[J]. Organic Geochemistry, 2017, 113: 1−9. doi: 10.1016/j.orggeochem.2017.08.006
    [57] Bard E, Hamelin B, Delanghe-Sabatier D. Deglacial Meltwater Pulse 1B and Younger Dryas sea levels revisited with boreholes at Tahiti[J]. Science, 2010, 327(5970): 1235−1237. doi: 10.1126/science.1180557
    [58] Sancetta C, Heusser L, Labeyrie L, et al. Wisconsin—Holocene paleoenvironment of the Bering Sea: Evidence from diatoms, pollen, oxygen isotopes and clay minerals[J]. Marine Geology, 1984, 62(1/2): 55−68. doi: 10.1016/0025-3227(84)90054-9
    [59] Keigwin L D, Jones G A, Froelich P N. A 15, 000 year paleoenvironmental record from Meiji Seamount, far northwestern Pacific[J]. Earth and Planetary Science Letters, 1992, 111(2/4): 425−440. doi: 10.1016/0012-821X(92)90194-Z
    [60] North Greenland Ice Core Project Members. High-resolution record of northern hemisphere climate extending into the last interglacial period[J]. Nature, 2004, 431(7005): 147−151. doi: 10.1038/nature02805
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  158
  • HTML全文浏览量:  82
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-20
  • 修回日期:  2023-05-04
  • 网络出版日期:  2023-10-16
  • 刊出日期:  2023-11-30

目录

    /

    返回文章
    返回