留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于LIM-MCMC模型研究江苏近海北部海域食物网能量流动特征

张虎 李鹏程 胡海生 薛莹 袁健美 贲成恺 祝超文 肖悦悦 祖凯伟

张虎,李鹏程,胡海生,等. 基于LIM-MCMC模型研究江苏近海北部海域食物网能量流动特征[J]. 海洋学报,2023,45(9):105–118 doi: 10.12284/hyxb2023120
引用本文: 张虎,李鹏程,胡海生,等. 基于LIM-MCMC模型研究江苏近海北部海域食物网能量流动特征[J]. 海洋学报,2023,45(9):105–118 doi: 10.12284/hyxb2023120
Zhang Hu,Li Pengcheng,Hu Haisheng, et al. Energy flow characteristics of the food web in the northern waters of Jiangsu Province based on LIM-MCMC model[J]. Haiyang Xuebao,2023, 45(9):105–118 doi: 10.12284/hyxb2023120
Citation: Zhang Hu,Li Pengcheng,Hu Haisheng, et al. Energy flow characteristics of the food web in the northern waters of Jiangsu Province based on LIM-MCMC model[J]. Haiyang Xuebao,2023, 45(9):105–118 doi: 10.12284/hyxb2023120

基于LIM-MCMC模型研究江苏近海北部海域食物网能量流动特征

doi: 10.12284/hyxb2023120
基金项目: 2022年度江苏省农业生态保护与资源利用专项—渔业生态与资源监测(2022-SJ-061-01);2021年度江苏省农业生态保护与资源利用专项—渔业生态与资源监测(2021-SJ-110-02)。
详细信息
    作者简介:

    张虎(1980-),男,江苏省新沂市人,正高级工程师,从事海洋生态与渔业资源研究。E-mail:ahu80@163.com

    通讯作者:

    薛莹,男,教授,主要从事渔业资源生物学、渔业生态学等领域的研究。E-mail:xueying@ouc.edu.cn

  • 中图分类号: P714+.5;S931.1

Energy flow characteristics of the food web in the northern waters of Jiangsu Province based on LIM-MCMC model

  • 摘要: 食物网结构特征和能量流动的研究,对于维持海洋生态系统结构和功能的稳定具有重要意义,有助于深入理解海洋生态系统的复杂过程。本研究基于2019−2021年在江苏近海北部海域开展的季节性渔业资源底拖网调查数据,通过构建基于蒙特卡罗马尔科夫链算法的逆线性模型(Linear Inverse Models using a Monte Carlo Method Coupled with Markov Chain, LIM-MCMC),结合生态网络分析(Ecological Network Analysis,ENA)的方法,分析了该海域生态系统状态和食物网能量流动特征,旨在为江苏近海北部海域食物网营养动力学研究提供参考依据。结果表明,该海域生态系统共包含299条能量流动路径,能量流动分布整体呈典型的金字塔结构,各功能群呼吸消耗和流入有机碎屑的能量保持同步性。通过与其他海域比较发现,江苏近海北部海域生态系统的连接指数(Connectance,C)和系统杂食指数(System Omnivory Index,SOI)分别为0.40和0.22,处于较高水平,表明该生态系统不同营养级间的营养联系较为紧密,食物网结构相对复杂,能够在较大程度上抵御外界扰动。总初级生产力/总呼吸(Total Primary Production/Total Respiration,TPP/TR)和Finn’s循环指数(Finn’s Cycling Index,FCI)分别为1.05和5.76%,表明该生态系统对能量利用效率较高。此外,约束效率(Constraint Efficiency,CE)、发展程度(Extent of Development,AC)、协同效应指数(Synergism Index,b/c)和主导间接效应(Dominance Indirect Effects,i/d)也表明该生态系统具有较高的系统发展程度、再生潜力和系统发展空间。本研究将有助于为江苏近海北部海域生态系统的修复和渔业资源的可持续利用提供理论基础,为实施基于生态系统的渔业管理提供科学依据。
  • 图  1  江苏近海北部海域采样站位分布

    •为底栖生物调查站位;+为游泳生物、浮游动物和浮游植物调查站位

    Fig.  1  Distribution of sampling stations in northern areas of Jiangsu Province

    • Benthic survey stations; + nekton, zooplankton and phytoplankton survey stations

    图  2  江苏近海北部海域食物网能量流动特征

    G1−G26表示26个功能群;蓝色表示呼吸,灰色表示CO2,番茄色表示第I营养级,橘黄色表示第II −III营养级,红色表示第III− IV营养级,黄色表示第 IV−Ⅴ营养级;圆圈大小表示能量流动值;→表示能量流入方向

    Fig.  2  Energy flow characteristics of food webs in northern sea areas of Jiangsu Province

    G1−G26 represents 26 functional groups; blue for respiration, gray for CO2, tomato colour for I trophic level, orange colour for II −III trophic level, red trophic level for III− IV trophic level, yellow for IV−Ⅴ trophic level; the magnitude of circle represents the energy flow value;→ indicates the direction of energy flow

    图  3  江苏近海北部海域食物网能量流动路径分析(能量流动编号见表A1)

    Fig.  3  Energy flow of food webs in northern areas of Jiangsu Province (The number of energy flows see Fig. A1)

    图  4  江苏近海北部海域食物网各功能群呼吸消耗和流入碎屑的能流值

    Fig.  4  Respiratory consumption and energy flow to detritus by functional groups of the food web in northern sea areas of Jiangsu Province

    表  1  生态网络分析指数

    Tab.  1  Ecological network analysis (ENA) indices

    生态网络分析指数类型指数名称简称
    基本指数生态系统总流量TST
    总呼吸量TR
    流向碎屑的能量TDET
    系统杂食指数SOI
    总初级生产量TPP
    总初级生产力/总呼吸TPP/TR
    总初级生产力/总生物量TPP/TB
    连接数L
    连接指数C
    平均连接权重TST/L
    平均隔间流通量TST/n
    路径分析总系统循环流量TSTc
    系统非循环总流量TSTs
    Finn’s循环指数FCI
    平均路径长度APL
    网络不确定性平均相互信息AMI
    统计不确定性HR
    条件的不确定性DR
    实现的不确定性RUR
    网络约束HC
    约束效率CE
    系统发展和增长优势度A
    开发能力DC
    发展程度AC
    环境分析同质化HP
    协同效应指数b/c
    主导间接效应i/d
    营养和杂食性水平营养级TL
    杂食指数OI
    下载: 导出CSV

    表  2  江苏近海北部海域功能群划分及LIM-MCMC模型的基本参数

    Tab.  2  Functional groups division and basic parameters of LIM-MCMC model in northern sea areas of Jiangsu Province

    功能群生物量/(t·km−2·a−1生产量/生物量(P/B消耗量/生物量(Q/B排泄量/生物量(U/B呼吸量/生物量(R/B营养级杂食指数
    G1 长蛇鲻0.0021.526.000.10~0.500.50~0.524.190.242
    G2 星康吉鳗0.0024.607.600.10~0.500.50~0.524.080.259
    G3 黄鮟鱇0.0011.16~1.261.40~3.800.10~0.500.50~0.524.310.136
    G4 虾虎鱼科0.0991.594.700.10~0.500.52~0.553.390.156
    G5 鲆鲽类0.0150.74~1.465.60~16.100.10~0.500.52~0.553.460.219
    G6 石首鱼科0.1721.15~4.605.90~9.100.10~0.500.52~0.553.640.371
    G7 鳀科0.0962.37~2.705.980.10~0.500.52~0.553.080.190
    G8 其他底层鱼类0.0791.45~2.904.23~9.900.10~0.500.52~0.553.360.378
    G9 其他中上层鱼类0.0230.46~2.373.10~18.700.10~0.500.52~0.553.250.376
    G10 近底层鱼类0.0410.63~3.264.80~9.000.10~0.500.52~0.553.290.400
    G11 蟹类0.6643.5012.000.10~0.500.55~0.752.900.460
    G12 口虾蛄0.7261.34~8.007.43~30.000.10~0.500.52~0.553.200.386
    G13 戴氏赤虾0.0063.90~5.6515.00~26.900.10~0.500.52~0.553.020.301
    G14 细鳌虾0.0713.7524.900.10~0.500.55~0.752.660.245
    G15 鹰爪虾0.0611.8413.000.10~0.500.55~0.752.990.154
    G16 长臂虾科0.3727.6925.000.10~0.500.55~0.752.880.161
    G17 其他虾类0.3818.00~8.8028.00~30.000.10~0.500.55~0.752.820.112
    G18 头足类0.0242.00~4.507.00~17.000.10~0.500.52~0.553.610.466
    G19 其他头足类0.0034.5917.550.10~0.500.52~0.553.450.198
    G20 棘皮动物0.3651.20~4.503.58~16.700.10~0.500.55~0.752.520.301
    G21 软体动物29.8696.0027.000.10~0.500.55~0.752.030.025
    G22 底栖动物2.9441.57~5.008.60~20.000.10~0.500.55~0.752.030.151
    G23 尖海龙0.0052.305.980.10~0.500.55~0.752.850.014
    G24 浮游动物2.27125.00~40.00122.10~180.030.10~0.500.70~0.932.000.014
    G25 浮游植物20.673106.520.05~0.500.05~0.301.000.000
    G26有机碎屑51.9121.000.000
    注:“−”代表无数据。
    下载: 导出CSV

    表  3  江苏近海北部海域食物网各功能群能量流入、流出路径数及比例

    Tab.  3  The number and ratio of energy flow paths of each functional group in the food web in northern sea areas of Jiangsu Province

    功能群能量流入
    路径数
    能量流出
    路径数
    占总能流路径
    数比例/%
    G1 长蛇鲻1667.36
    G2 星康吉鳗1927.02
    G3 黄鮟鱇1525.69
    G4 虾虎鱼科16129.36
    G5 鲆鲽类2179.36
    G6 石首鱼科201210.70
    G7 鳀科7126.35
    G8 其他底层鱼类231011.04
    G9 其他中上层鱼类1667.36
    G10 近底层鱼类11127.69
    G11 蟹类7157.36
    G12 口虾蛄13118.03
    G13 戴氏赤虾4115.02
    G14 细鳌虾2166.02
    G15 鹰爪虾996.02
    G16 长臂虾科484.01
    G17 其他虾类111910.03
    G18 头足类13138.70
    G19 其他头足类6115.69
    G20 棘皮动物5136.02
    G21 软体动物2217.69
    G22 底栖动物5218.70
    G23 尖海龙121.00
    G24 浮游动物2259.03
    G25 浮游植物1134.68
    G26有机碎屑25710.70
    下载: 导出CSV

    表  4  江苏近海北部海域生态网络分析指数

    Tab.  4  Ecological network analysis indices in northern sea areas of Jiangsu Province

    生态网络分析指数类型指数名称
    基本指数生态系统总流量(TST)6 345.21
    总呼吸量(TR)1 613.32
    流向碎屑的能量(TDET)749.55
    系统杂食性指数(SOI)0.22
    总初级生产量(TPP)1 695.90
    总初级生产量/总呼吸(TPP/TR)1.05
    总初级生产量/总生物量(TPP/TB)27.30
    连接数(L)299
    连接指数(C)0.40
    平均连接权重(TST/L)21.22
    平均隔间流通量(TST/n)326.22
    路径分析总系统循环流量(TSTc)365.48
    系统非循环总流量(TSTs)5 979.72
    Finn’s循环指数%(FCI)5.76
    平均路径长度(APL)2.26
    网络不确定性平均相互信息(AMI)1.64
    统计不确定性(HR3.14
    条件的不确定性(DR1.50
    实现的不确定性(RUR0.52
    网络约束(HC88.16
    约束效率(CE)0.71
    系统发展和增长优势度(A)19 009.65
    开发能力(DC)29 428.58
    发展程度(AC)0.65
    环境分析同质化(HP)1.80
    协同效应指数(b/c)1.12
    主导间接效应(i/d)6.09
    下载: 导出CSV

    表  5  江苏近海北部海域与其他海域生态系统特征参数的比较

    Tab.  5  Comparation of characteristic parameters between northern sea areas of Jiangsu Province and other marine ecosystems

    研究区域TSTTPPTPP /TRCSOI
    嵊泗人工鱼礁区[41]516017301.39
    枸杞岛海藻场[42]28019116041.250.220.33
    渤海[43]331615668.400.34
    海州湾[4]479022027.090.430.20
    黄河口[17]312613543.450.380.12
    江苏近海北部海域(本研究)6345.2116961.050.400.22
    注:“−”代表相关研究没有计算该指数。
    下载: 导出CSV

    表  A1  江苏近海北部海域食物网能量流动路径及其符号含义

    Tab.  A1  Energy flow paths of food webs and their symbolic meanings in northern sea areas of Jiangsu Province and other marine ecosystems

    序号能量流动路径 序号能量流动路径 序号能量流动路径 序号能量流动路径 序号能量流动路径
    x1G1→G1 x61G8→G10 x121G14→G4 x181G18→G17 x241G22→G12
    x2G1→G2x62G8→G26x122G14→G5x182G18→G18x242G22→G13
    x3G1→G8x63G8→RESx123G14→G6x183G18→G26x243G22→G15
    x4G1→G9x64G9→G5x124G14→G7x184G18→RESx244G22→G16
    x5G1→G26x65G9→G8x125G14→G8x185G19→G2x245G22→G17
    x6G1→RESx66G9→G10x126G14→G9x186G19→G4x246G22→G18
    x7G2→G26x67G9→G18x127G14→G10x187G19→G6x247G22→G19
    x8G2→RESx68G9→G26x128G14→G12x188G19→G8x248G22→G20
    x9G3→G26x69G9→RESx129G14→G15x189G19→G9x249G22→G26
    x10G3→RESx70G10→G1x130G14→G17x190G19→G12x250G22→RES
    x11G4→G1x71G10→G2x131G14→G18x191G19→G15x251G23→G26
    x12G4→G2x72G10→G4x132G14→G19x192G19→G16x252G23→RES
    x13G4→G3x73G10→G5x133G14→G26x193G19→G18x253G24→G1
    x14G4→G4x74G10→G6x134G14→RESx194G19→G26x254G24→G3
    x15G4→G5x75G10→G8x135G15→G1x195G19→RESx255G24→G4
    x16G4→G6x76G10→G9x136G15→G2x196G20→G1x256G24→G5
    x17G4→G8x77G10→G10x137G15→G3x197G20→G2x257G24→G6
    x18G4→G9x78G10→G12x138G15→G5x198G20→G4x258G24→G7
    x19G4→G11x79G10→G18x139G15→G6x199G20→G5x259G24→G8
    x20G4→G12x80G10→G26x140G15→G7x200G20→G6x260G24→G9
    x21G4→G26x81G10→RESx141G15→G8x201G20→G8x261G24→G10
    x22G4→RES x82G11→G2 x142G15→G26 x202G20→G9 x262G24→G11
    x23G5→G3x83G11→G3x143G15→RESx203G20→G12x263G24→G12
    x24G5→G5x84G11→G4x144G16→G2x204G20→G13x264G24→G13
    x25G5→G6x85G11→G5x145G16→G4x205G20→G17x265G24→G14
    x26G5→G8x86G11→G6x146G16→G5x206G20→G20x266G24→G15
    x27G5→G9x87G11→G8x147G16→G6x207G20→G26x267G24→G16
    x28G5→G26x88G11→G9x148G16→G8x208G20→RESx268G24→G17
    x29G5→RESx89G11→G11x149G16→G18x209G21→G1x269G24→G18
    x30G6→G1x90G11→G12x150G16→G26x210G21→G2x270G24→G19
    x31G6→G2x91G11→G15x151G16→RESx211G21→G3x271G24→G20
    x32G6→G3x92G11→G17x152G17→G1x212G21→G4x272G24→G21
    x33G6→G5x93G11→G19x153G17→G2x213G21→G5x273G24→G22
    x34G6→G6x94G11→G22x154G17→G3x214G21→G6x274G24→G23
    x35G6→G8x95G11→G26x155G17→G4x215G21→G7x275G24→G24
    x36G6→G11x96G11→RESx156G17→G5x216G21→G8x276G24→G26
    x37G6→G12x97G12→G2x157G17→G6x217G21→G9x277G24→RES
    x38G6→G15x98G12→G4x158G17→G7x218G21→G10x278G25→G3
    x39G6→G18x99G12→G5x159G17→G8x219G21→G11x279G25→G4
    x40G6→G26x100G12→G6x160G17→G9x220G21→G12x280G25→G5
    x41G6→RESx101G12→G8x161G17→G10x221G21→G13x281G25→G8
    x42G7→G1x102G12→G12x162G17→G11x222G21→G15x282G25→G9
    x43G7→G2x103G12→G17x163G17→G12x223G21→G16x283G25→G14
    x44G7→G3x104G12→G18x164G17→G15x224G21→G17x284G25→G17
    x45G7→G4x105G12→G19x165G17→G17x225G21→G18x285G25→G20
    x46G7→G5x106G12→G26x166G17→G18x226G21→G20x286G25→G21
    x47G7→G6x107G12→RESx167G17→G19x227G21→G22x287G25→G22
    x48G7→G8x108G13→G1x168G17→G22x228G21→G26x288G25→G24
    x49G7→G9x109G13→G2x169G17→G26x229G21→RESx289G25→G26
    x50G7→G10x110G13→G3x170G17→RESx230G22→G1x290G25→RES
    x51G7→G18x111G13→G4x171G18→G1x231G22→G2x291G26→G1
    x52G7→G26x112G13→G5x172G18→G2x232G22→G3x292G26→G2
    x53G7→RESx113G13→G6x173G18→G3x233G22→G4x293G26→G3
    x54G8→G1x114G13→G7x174G18→G5x234G22→G5x294G26→G4
    x55G8→G2x115G13→G8x175G18→G6x235G22→G6x295G26→G5
    x56G8→G3x116G13→G10x176G18→G8x236G22→G7x296G26→G5
    x57G8→G5x117G13→G26x177G18→G9x237G22→G8x297G26→G8
    x58G8→G6 x118G13→RES x178G18→G10 x238G22→G9 x298G26→G17
    x59G8→G8x119G14→G1x179G18→G12x239G22→G10x299CO2→G25
    x60G8→G9x120G14→G2x180G18→G15x240G22→G11
    注:G1. 长蛇鲻;G2. 星康吉鳗;G3. 黄鮟鱇;G4. 虾虎鱼科;G5. 鲆鲽类;G6. 石首鱼科;G7. 鳀科;G8. 其他底层鱼类;G9. 其他中上层鱼类;G10. 近底层鱼类;G11. 蟹类;G12. 口虾蛄; G13. 戴氏赤虾;G14. 细鳌虾;G15. 鹰爪虾;G16. 长臂虾科;G17. 其他虾类;G18. 头足类;G19. 其他头足类;G20. 棘皮动物;G21. 软体动物;G22. 底栖动物;G23. 尖海龙;G24. 浮游动物;G25. 浮游植物;G26. 有机碎屑;RES. 呼吸。
    下载: 导出CSV
  • [1] 刘尊雷, 程家骅, 李圣法, 等. 江苏近岸海域鱼类群落结构的变化[J]. 中国水产科学, 2009, 16(2): 274−281. doi: 10.3321/j.issn:1005-8737.2009.02.016

    Liu Zunlei, Cheng Jiahua, Li Shengfa, et al. Changes of fish community structure in Jiangsu, China offshore areas[J]. Journal of Fishery Sciences of China, 2009, 16(2): 274−281. doi: 10.3321/j.issn:1005-8737.2009.02.016
    [2] 田丰歌, 徐兆礼. 春夏季苏北浅滩大丰水域浮游动物生态特征[J]. 海洋环境科学, 2011, 30(3): 316−320. doi: 10.3969/j.issn.1007-6336.2011.03.003

    Tian Fengge, Xu Zhaoli. Ecological characters of zooplankton in middle area of Subei Shoal in spring and summer[J]. Marine Environmental Science, 2011, 30(3): 316−320. doi: 10.3969/j.issn.1007-6336.2011.03.003
    [3] Vasslides J M, Jensen O P. Quantitative vs. Semiquantitative ecosystem models: comparing alternate representations of an estuarine ecosystem[J]. Journal of Coastal Research, 2017, 78(10078): 287−296.
    [4] 任晓明, 刘阳, 徐宾铎, 等. 基于Ecopath模型的海州湾及邻近海域生态系统结构研究[J]. 海洋学报, 2020, 42(6): 101−109.

    Ren Xiaoming, Liu Yang, Xu Binduo, et al. Ecosystem structure in the Haizhou Bay and adjacent waters based on Ecopath model[J]. Haiyang Xuebao, 2020, 42(6): 101−109.
    [5] 徐从军, 隋昊志, 徐宾铎, 等. 基于LIM-MCMC模型研究海州湾食物网能量流动特征[J]. 中国水产科学, 2021, 28(1): 66−78.

    Xu Congjun, Sui Haozhi, Xu Binduo, et al. Energy flows in the Haizhou Bay food web based on the LIM-MCMC model[J]. Journal of Fishery Sciences of China, 2021, 28(1): 66−78.
    [6] Malaterre C, Dussault A C, Rousseau-Mermans S, et al. Functional diversity: an epistemic roadmap[J]. BioScience, 2019, 69(10): 800−811. doi: 10.1093/biosci/biz089
    [7] Vézina A F, Platt T. Food web dynamics in the ocean. I. Best-estimates of flow networks using inverse methods[J]. Marine Ecology Progress Series, 1988, 42(3): 269−287.
    [8] Niquil N, Saint-Béat B, Johnson G A, et al. Inverse modeling in modern ecology and application to coastal ecosystems[J]. Treatise on Estuarine and Coastal Science, 2011, 9: 115−133.
    [9] Kones J K, Soetaert K, Van Oevelen D, et al. Gaining insight into food webs reconstructed by the inverse method[J]. Journal of Marine Systems, 2006, 60(1/2): 153−166.
    [10] Johnson R W, McElhaney J. Postherpetic neuralgia in the elderly[J]. The International Journal of Clinical Practice, 2009, 63(9): 1386−1391. doi: 10.1111/j.1742-1241.2009.02089.x
    [11] Savenkoff C, Castonguay M, Chabot D, et al. Changes in the northern Gulf of St. Lawrence ecosystem estimated by inverse modelling: evidence of a fishery-induced regime shift?[J]. Estuarine, Coastal and Shelf Science, 2007, 73(3/4): 711−724.
    [12] Chaalali A, Saint-Béat B, Lassalle G, et al. A new modeling approach to define marine ecosystems food-web status with uncertainty assessment[J]. Progress in Oceanography, 2015, 135: 37−47. doi: 10.1016/j.pocean.2015.03.012
    [13] Nogues Q, Raoux A, Araignous E, et al. Cumulative effects of marine renewable energy and climate change on ecosystem properties: sensitivity of ecological network analysis[J]. Ecological Indicators, 2021, 121: 107128. doi: 10.1016/j.ecolind.2020.107128
    [14] Tecchio S, Chaalali A, Raoux A, et al. Evaluating ecosystem-level anthropogenic impacts in a stressed transitional environment: the case of the Seine Estuary[J]. Ecological Indicators, 2016, 61: 833−845. doi: 10.1016/j.ecolind.2015.10.036
    [15] Van Oevelen D, Van den Meersche K, Meysman F J R, et al. Quantifying food web flows using linear inverse models[J]. Ecosystems, 2010, 13(1): 32−45. doi: 10.1007/s10021-009-9297-6
    [16] 欧阳力剑, 郭学武. 东、黄海主要鱼类Q/B值与种群摄食量研究[J]. 渔业科学进展, 2010, 31(2): 23−29. doi: 10.3969/j.issn.1000-7075.2010.02.004

    Ouyang Lijian, Guo Xuewu. Studies on the Q/B values and food consumption of major fishes in the East China Sea and the Yellow Sea[J]. Progress in Fishery Sciences, 2010, 31(2): 23−29. doi: 10.3969/j.issn.1000-7075.2010.02.004
    [17] 林群, 王俊, 李忠义, 等. 黄河口邻近水域贝类生态容量[J]. 应用生态学报, 2018, 29(9): 3131−3138. doi: 10.13287/j.1001-9332.201809.039

    Lin Qun, Wang Jun, Li Zhongyi, et al. Ecological carrying capacity of shellfish in the Yellow River Estuary and its adjacent waters[J]. Chinese Journal of Applied Ecology, 2018, 29(9): 3131−3138. doi: 10.13287/j.1001-9332.201809.039
    [18] 张硕, 王腾, 符小明, 等. 连云港海州湾渔业生态修复水域生态系统能量流动模型初探[J]. 海洋环境科学, 2015, 34(1): 42−47. doi: 10.13634/j.cnki.mes.2015.01.008

    Zhang Shuo, Wang Teng, Fu Xiaoming, et al. A primary study on the energy flow in the ecosystem of fishery ecological restoration area in Haizhou Bay, Lianyungang[J]. Marine Environmental Science, 2015, 34(1): 42−47. doi: 10.13634/j.cnki.mes.2015.01.008
    [19] 王腾, 张贺, 张虎, 等. 基于营养通道模型的海州湾中国明对虾生态容纳量[J]. 中国水产科学, 2016, 23(4): 965−975.

    Wang Teng, Zhang He, Zhang Hu, et al. Ecological carrying capacity of Chinese shrimp stock enhancement in Haizhou Bay of East China based on Ecopath model[J]. Journal of Fishery Sciences of China, 2016, 23(4): 965−975.
    [20] 徐超, 王思凯, 赵峰, 等. 基于Ecopath模型的长江口生态系统营养结构和能量流动研究[J]. 海洋渔业, 2018, 40(3): 309−318. doi: 10.3969/j.issn.1004-2490.2018.03.006

    Xu Chao, Wang Sikai, Zhao Feng, et al. Trophic structure and energy flow of the Yangtze Estuary ecosystem based on the analysis with Ecopath model[J]. Marine Fisheries, 2018, 40(3): 309−318. doi: 10.3969/j.issn.1004-2490.2018.03.006
    [21] 王远超, 梁翠, 线薇微, 等. 基于生态通道模型的长江口及邻近海域生态系统能流动态分析[J]. 海洋科学, 2018, 42(5): 54−67. doi: 10.11759/hykx20170816001

    Wang Yuanchao, Liang Cui, Xian Weiwei, et al. Ecopath based dynamic analyses of energy flows of Yangtze Estuary and its adjacent waters[J]. Marine Sciences, 2018, 42(5): 54−67. doi: 10.11759/hykx20170816001
    [22] 王玮, 王俊杰, 左平, 等. 基于Ecopath模型的西南黄海生态系统结构和能量流动分析[J]. 应用海洋学学报, 2019, 38(4): 528−539. doi: 10.3969/J.ISSN.2095-4972.2019.04.008

    Wang Wei, Wang Junjie, Zuo Ping, et al. Analysis of structure and energy flow in southwestern Yellow Sea ecosystem based on Ecopath model[J]. Journal of Applied Oceanography, 2019, 38(4): 528−539. doi: 10.3969/J.ISSN.2095-4972.2019.04.008
    [23] Han Dongyan, Xue Ying, Zhang Chongliang, et al. A mass balanced model of trophic structure and energy flows of a semi-closed marine ecosystem[J]. Acta Oceanologica Sinica, 2017, 36(10): 60−69. doi: 10.1007/s13131-017-1071-6
    [24] Hoshiba Y, Hirata T, Shigemitsu M, et al. Biological data assimilation for parameter estimation of a phytoplankton functional type model for the western North Pacific[J]. Ocean Science, 2018, 14(3): 371−386. doi: 10.5194/os-14-371-2018
    [25] 林群, 金显仕, 张波, 等. 基于营养通道模型的渤海生态系统结构十年变化比较[J]. 生态学报, 2009, 29(7): 3613−3620.

    Lin Qun, Jin Xianshi, Zhang Bo, et al. Comparative study on the changes of the Bohai Sea ecosystem structure based on Ecopath model between ten years[J]. Acta Ecologica Sinica, 2009, 29(7): 3613−3620.
    [26] 程济生, 朱金声. 黄海主要经济无脊椎动物摄食特征及其营养层次的研究[J]. 海洋学报, 1997, 19(6): 102−108.

    Cheng Jisheng, Zhu Jinsheng. The study on feeding characteristics and trophic levels of main economic invertebrates in the Yellow Sea[J]. Haiyang Xuebao, 1997, 19(6): 102−108.
    [27] 杨纪明. 渤海鱼类的食性和营养级研究[J]. 现代渔业信息, 2001, 16(10): 10−19.

    Yang Jiming. A study on food and trophic levels of Baohai Sea fish[J]. Modern Fisheries Information, 2001, 16(10): 10−19.
    [28] Froese R, Pauly D. FishBase. World Wide Web electronic publication[EB/OL]. [2023−02−17]. http://www.fishbase.org.
    [29] Soetaert K, Van Oevelen D. LIM: linear inverse model examples and solution methods[EB/OL]. [2022−05−11]. https://cran.r-project.org/web/packages/LIM/index.html.
    [30] Soetaert K, Van den Meersche K, Van Oevelen D, et al. limSolve: solving linear inverse models[EB/OL]. [2022−10−13]. https://cran.r-project.org/web//packages/limSolve/limSolve.pdf.
    [31] Saint-Béat B, Vézina A F, Asmus R, et al. The mean function provides robustness to linear inverse modelling flow estimation in food webs: a comparison of functions derived from statistics and ecological theories[J]. Ecological Modelling, 2013, 258: 53−64. doi: 10.1016/j.ecolmodel.2013.01.023
    [32] Proulx S R, Promislow D E L, Phillips P C. Network thinking in ecology and evolution[J] Trends in Ecology & Evolution, 2005, 20(6): 345−353.
    [33] Heymans J J, Guénette S, Christensen V. Evaluating network analysis indicators of ecosystem status in the gulf of Alaska[J]. Ecosystems, 2007, 10(3): 488−502. doi: 10.1007/s10021-007-9034-y
    [34] Latham II L G. Network flow analysis algorithms[J]. Ecological Modelling, 2006, 192(3/4): 586−600.
    [35] Odum E P. The strategy of ecosystem development: an understanding of ecological succession provides a basis for resolving man’s conflict with nature[J]. Science, 1969, 164(3877): 262−270. doi: 10.1126/science.164.3877.262
    [36] 陈作志, 邱永松. 南海北部生态系统食物网结构、能量流动及系统特征[J]. 生态学报, 2010, 30(18): 4855−4865.

    Chen Zuozhi, Qiu Yongsong. Assessment of the food-web structure, energy flows, and system attribute of northern South China Sea ecosystem[J]. Acta Ecologica Sinica, 2010, 30(18): 4855−4865.
    [37] Finn J T. Flow analysis of models of the Hubbard Brook ecosystem[J]. Ecology, 1980, 61(3): 562−571. doi: 10.2307/1937422
    [38] Latham II L G, Scully E P. Quantifying constraint to assess development in ecological networks[J]. Ecological Modelling, 2002, 154(1/2): 25−44.
    [39] Ulanowicz R E. Ascendency: a measure of ecosystem performance[M]//Jørgensen S E, Müeller F. Handbook of Ecosystem Theories and Management. Boca Raton: Lewis Publishers, 2000: 303−315.
    [40] Fath B D. Distributed control in ecological networks[J]. Ecological Modelling, 2004, 179(2): 235−245. doi: 10.1016/j.ecolmodel.2004.06.007
    [41] 李永刚, 汪振华, 章守宇. 嵊泗人工鱼礁海区生态系统能量流动模型初探[J]. 海洋渔业, 2007, 29(3): 226−234. doi: 10.3969/j.issn.1004-2490.2007.03.006

    Li Yonggang, Wang Zhenhua, Zhang Shouyu. A preliminary approach on the ecosystem model of the artificial reef in Shengsi[J]. Marine Fisheries, 2007, 29(3): 226−234. doi: 10.3969/j.issn.1004-2490.2007.03.006
    [42] 赵静, 章守宇, 许敏. 枸杞海藻场生态系统能量流动模型初探[J]. 上海海洋大学学报, 2010, 19(1): 98−104.

    Zhao Jing, Zhang Shouyu, Xu Min. The primary research of the energy flow in Gouqi kelp bed ecosystem[J]. Journal of Shanghai Ocean University, 2010, 19(1): 98−104.
    [43] Tong Ling, Tang Qisheng, Pauly D. A preliminary approach on mass-balance ecopath model of the Bohai Sea[J]. Chinese Journal of Applied Ecology, 2000, 11(3): 435−440.
    [44] Navia A F, Maciel-Zapata S R, González-Acosta A F, et al. Importance of weak trophic interactions in the structure of the food web in La Paz Bay, southern Gulf of California: a topological approach[J]. Bulletin of Marine Science, 2019, 95(2): 199−215. doi: 10.5343/bms.2018.0043
    [45] Parmesan C. Ecological and evolutionary responses to recent climate change[J]. Annual Review of Ecology Evolution, and Systematics, 2006, 37: 637−669. doi: 10.1146/annurev.ecolsys.37.091305.110100
    [46] Planque B, Primicerio R, Michalsen K, et al. Who eats whom in the Barents Sea: a food web topology from plankton to whales[J]. Ecology, 2014, 95(5): 1430. doi: 10.1890/13-1062.1
    [47] Benoit D M, Jackson D A, Chu C. Partitioning fish communities into guilds for ecological analyses: an overview of current approaches and future directions[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2021, 78(7): 984−993. doi: 10.1139/cjfas-2020-0455
  • 加载中
图(4) / 表(6)
计量
  • 文章访问数:  142
  • HTML全文浏览量:  83
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-17
  • 修回日期:  2023-04-23
  • 网络出版日期:  2023-08-24
  • 刊出日期:  2023-09-30

目录

    /

    返回文章
    返回