留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

透水珊瑚岸礁亚重力波水动力特性数值研究

王旭 屈科 门佳

王旭,屈科,门佳. 透水珊瑚岸礁亚重力波水动力特性数值研究[J]. 海洋学报,2023,45(9):152–167 doi: 10.12284/hyxb2023118
引用本文: 王旭,屈科,门佳. 透水珊瑚岸礁亚重力波水动力特性数值研究[J]. 海洋学报,2023,45(9):152–167 doi: 10.12284/hyxb2023118
Wang Xu,Qu Ke,Men Jia. Numerical study on infragravity wave hydrodynamics of permeable fringing reef[J]. Haiyang Xuebao,2023, 45(9):152–167 doi: 10.12284/hyxb2023118
Citation: Wang Xu,Qu Ke,Men Jia. Numerical study on infragravity wave hydrodynamics of permeable fringing reef[J]. Haiyang Xuebao,2023, 45(9):152–167 doi: 10.12284/hyxb2023118

透水珊瑚岸礁亚重力波水动力特性数值研究

doi: 10.12284/hyxb2023118
基金项目: 国家重点研发计划(2022YFC3103601);国家自然科学基金重点(51839002);湖南省自然科学基金(2021JJ20043);2022年长沙理工大学研究生科研创新项目(CXCLY2022071)。
详细信息
    作者简介:

    王旭(1997-),男,安徽省阜阳市人,主要从事波浪水动力研究。E-mail: 1026075708@qq.com

    通讯作者:

    屈科(1985-),男,陕西省咸阳市人,副教授,主要从事计算流体力学、海岸工程、海洋工程研究。E-mail: kqu@csust.edu.cn

  • 中图分类号: P731.26

Numerical study on infragravity wave hydrodynamics of permeable fringing reef

  • 摘要: 基于非静压单相流模型(NHWAVE),对随机波浪在透水珊瑚岸礁上传播过程进行了数值模拟,综合考虑入射波高、礁坪水深、谱峰周期、透水层厚度、透水层孔隙率以及颗粒的中值粒径等因素对岸礁波浪水动力特性的影响,重点分析了短波波高、低频长波波高、平均水位的沿礁变化,并与无透水层的岸礁情况进行了对比。研究表明:透水层的存在减弱了波浪在礁前斜坡的浅水变形和在礁缘附近的波浪破碎,显著降低了岸线附近的短波波高、低频长波波高以及波浪增水值,除此之外,透水层的存在会降低波浪在岸滩的最大爬高;透水层的孔隙率和颗粒的中值粒径对波浪传播变形特征的影响可忽略不计;入射波高和谱峰周期越大,岸礁透水层对短波、长波及波浪增水的影响越显著;当增大礁坪水深时,透水层对波浪的消减作用减弱;随着透水层厚度的增大,岸线附近的短波波高、长波波高和波浪增水值随之减小。
  • 图  1  计算区域布置

    Fig.  1  Calculation area layout

    图  2  工况 A低频长波波高(HSS)、短波波高(HIG)和平均水位(MWL)的空间分布

    Fig.  2  Experiment and simulation spatial distribution of sea-swell wave height (HSS), infragravity wave height (HIG) and mean water level (MWL) for results for Case A

    图  3  工况 B低频长波波高(HSS)、短波波高(HIG)和平均水位(MWL)的空间分布

    Fig.  3  Experiment and simulation spatial distribution of sea-swell wave height (HSS), infragravity wave height (HIG) and mean water level (MWL) for results for Case B

    图  4  计算区域布置

    Fig.  4  Caluclation area layout

    图  5  不同位置表面高程的时间序列

    数据已进行无量纲化

    Fig.  5  Time series of surface elevation at different locations

    Data has been dimensionless

    图  6  沿礁平均波高和平均水位对比

    数据已进行无量纲化

    Fig.  6  Comparison of average wave height and mean water level along the reef

    Data has been dimensionless

    图  7  带有透水层岸礁区域布置

    Fig.  7  Computational layout for the reef with an permeable layer

    图  8  不同测点处自由液面高程的时间序列对比

    Fig.  8  Comparisons of the time series of water surface elevations recorded at different wave gauges

    图  9  不同测点的波谱对比

    Fig.  9  Comparison of the wave spectrum of the different wave gauges

    图  10  短波波高(${H}_{{\rm{SS}}}$)、低频长波波高(${H}_{{\rm{IG}}}$)和平均水位(${\rm{MWL}}$)的空间分布对比

    Fig.  10  Comparison of the spatial distribution of sea-swell wave height (HSS), infragravity wave height (HIG) and mean water level (MWL)

    图  11  最大水深平均速度(uave, max )的空间分布与爬高(Rup)的时间演化对比

    Fig.  11  Comparison of the maximum depth-averaged horizontal velocity (uave, max) and temporal evolutions of wave runup height (Rup)

    图  12  礁坪上方水平方向平均流场对比

    Fig.  12  Comparison of the horizontal average flow field above the reef plat

    图  13  不同入射波高下短波波高(${H}_{{\rm{SS}}}$)和低频长波波高(${H}_{{\rm{IG}}}$)的空间分布

    Fig.  13  Spatial distributions of the sea-swell wave height (${H}_{{\rm{SS}}}$) and infragravity wave height (${H}_{{\rm{IG}}} $) under different incident wave height

    图  14  波浪增水($\eta_r$)和最大爬高(Rup, max)随入射波高(H0)的变化

    Fig.  14  Variations of the wave setup ($\eta_r $) and the maximum wave runup height (Rup, max) with the incident wave height (H0)

    图  15  不同礁坪水深(hr)下短波波高($ {H}_{{\rm{SS}}} $)和低频长波波高($ {H}_{{\rm{IG}}} $)的空间分布

    Fig.  15  Spatial distributions of the sea-swell wave height (${H}_{{\rm{SS}}} $) and infragravity wave height (${H}_{{\rm{IG}}} $) under different water depth (hr) on reef flat

    图  16  波浪增水($ \eta_r $)和最大爬高(Rup, max)随礁坪水深(hr)的变化

    Fig.  16  Variations of the wave setup ($\eta_r $ ) and the maximum wave runup height (Rup, max) with the water depth (hr) on reef flat

    图  17  不同谱峰周期(Tp)下短波波高(${H}_{{\rm{SS}}}$)和低频长波波高(${H}_{{\rm{IG}}}$)的空间分布

    Fig.  17  Spatial distributions of the sea-swell wave height (${H}_{{\rm{SS}}} $) and infragravity wave height ( ${H}_{{\rm{IG}}} $) under different spectrum peak period (Tp)

    图  18  波浪增水($ \eta_r $)和最大爬高(Rup, max)随谱峰周期(Tp)的变化

    Fig.  18  Variations of the wave setup ($ \eta_r $) and the maximum wave runup height (Rup, max) with the spectrum peak period (Tp)

    图  19  不同透水层厚度(d)下短波波高(${H}_{{\rm{SS}}}$)、低频长波波高(${H}_{{\rm{IG}}}$)的空间分布

    Fig.  19  Spatial distributions of the sea-swell wave height (${H}_{{\rm{SS}}}$) and infragravity wave height (${H}_{{\rm{IG}}}$) under different thickness (d) of the permeable layer

    图  20  岸线附近短波波高(${H}_{{\rm{SS}}}$)和低频长波波高(${H}_{{\rm{IG}}}$)的随透水层厚度(d)的变化

    Fig.  20  Variations of the the significant sea-swell wave height (${H}_{{\rm{SS}}} $) and infragravity wave height (${H}_{{\rm{IG}}}$) with the thickness of the permeable layer (d)

    图  21  波浪增水($\eta_r $)和最大爬高(Rup, max)随透水层厚(d)度的变化

    Fig.  21  Variations of the wave setup ($\eta_r $) and the maximum wave runup height (Rup, max) with the thickness (d) of the permeable layer

    图  22  不同孔隙率(n)下短波波高(${H}_{{\rm{SS}}}$)、低频长波波高(${H}_{{\rm{IG}}}$)和平均水位(MWL)的空间分布

    Fig.  22  Spatial distributions of the sea-swell wave height (${H}_{{\rm{SS}}} $), infragravity wave height (${H}_{{\rm{IG}}} $) and mean water level under different permeable rate (n)

    图  23  波浪的最大爬高(Rup, max)随孔隙率(n)的变化

    Fig.  23  Variations of the maximum wave runup height (Rup, max) with the permeable rate (n)

    图  24  不同中值粒径下短波波高(${H}_{{\rm{SS}}}$)、低频长波波高(${H}_{{\rm{IG}}}$)和平均水位(MWL)的空间分布

    Fig.  24  Spatial distributions of the sea-swell wave height (${H}_{{\rm{SS}}} $), infragravity wave height (${H}_{{\rm{IG}}} $) and mean water level (MWL) under different nominal diameter D50

    图  25  波浪的最大爬高(Rup, max)随中值粒径(D50)的变化

    Fig.  25  Variations of the maximum wave runup height (Rup, max) with the nominal diameter (D50)

    表  1  验证工况

    Tab.  1  Validation working conditions

    工况Hs/mhr/mTp/s
    A0.0950.101.25
    B0.1010.01.0
     注:Hs为有效波高,hr为礁坪水深,Tp为谱峰周期。
    下载: 导出CSV

    表  2  数值模拟工况设置

    Tab.  2  Case setup of numerical simulation

    工况有效波高Hs/m礁坪水深hr/m谱峰周期Tp/s透水层厚度d/m孔隙率n中值粒径D50/m
    A10.043 30.051.25000
    A20.064 950.051.25000
    A30.086 60.051.25000
    A40.108 250.051.25000
    A50.129 90.051.25000
    B10.043 30.051.250.050.780.027
    B20.064 950.051.250.050.780.027
    B30.086 60.051.250.050.780.027
    B40.108 250.051.250.050.780.027
    B50.129 90.051.250.050.780.027
    C10.086 601.25000
    C20.086 60.0251.25000
    C30.086 60.0751.25000
    C40.086 60.101.25000
    D10.086 601.250.050.780.027
    D20.086 60.0251.250.050.780.027
    D30.086 60.0751.250.050.780.027
    D40.086 60.101.250.050.780.027
    E10.086 60.050.75000
    E20.086 60.051.0000
    E30.086 60.051.5000
    E40.086 60.051.75000
    E40.086 60.052.0000
    F10.086 60.050.750.050.780.027
    F20.086 60.051.00.050.780.027
    F30.086 60.051.50.050.780.027
    F40.086 60.051.750.050.780.027
    F50.086 60.052.00.050.780.027
    G10.086 60.051.2500.780.027
    G20.086 60.051.250.0250.780.027
    G30.086 60.051.250.750.780.027
    G40.086 60.051.250.100.780.027
    H10.086 60.051.250.050.660.027
    H20.086 60.051.250.050.700.027
    H30.086 60.051.250.050.740.027
    H40.086 60.051.250.050.820.027
    H50.086 60.051.250.050.860.027
    I10.086 60.051.250.050.780.012
    I20.086 60.051.250.050.780.017
    I30.086 60.051.250.050.780.022
    I40.086 60.051.250.050.780.032
    I50.086 60.051.250.050.780.037
    下载: 导出CSV
  • [1] 赵焕庭. 中国现代珊瑚礁研究[J]. 世界科技研究与发展, 1998, 20(4): 98−105. doi: 10.16507/j.issn.1006-6055.1998.04.032

    Zhao Huanting. Research on modern coral reefs in China[J]. World Sci-Tech R & D, 1998, 20(4): 98−105. doi: 10.16507/j.issn.1006-6055.1998.04.032
    [2] Brander R W, Kench P S, Hart D. Spatial and temporal variations in wave characteristics across a reef platform, Warraber Island, Torres Strait, Australia[J]. Marine Geology, 2004, 207(1/4): 169−184.
    [3] Young I R. Wave transformation over coral reefs[J]. Journal of Geophysical Research: Oceans, 1989, 94(C7): 9779−9789. doi: 10.1029/JC094iC07p09779
    [4] Munk W H, Sargent M C. Adjustment of Bikini Atoll to ocean waves[J]. Eos, Transactions American Geophysical Union, 1948, 29(6): 855−860. doi: 10.1029/TR029i006p00855
    [5] Tait R J. Wave set-up on coral reefs[J]. Journal of Geophysical Research, 1972, 77(12): 2207−2211. doi: 10.1029/JC077i012p02207
    [6] Lentz S J, Churchill J H, Davis K A, et al. Surface gravity wave transformation across a platform coral reef in the Red Sea[J]. Journal of Geophysical Research: Oceans, 2016, 121(1): 693−705. doi: 10.1002/2015JC011142
    [7] 梅弢, 高峰. 波浪在珊瑚礁坪上传播的水槽试验研究[J]. 水道港口, 2013, 34(1): 13−18. doi: 10.3969/j.issn.1005-8443.2013.01.003

    Mei Tao, Gao Feng. Flume experiment research on law of wave propagation in reef flat[J]. Journal of Waterway and Harbor, 2013, 34(1): 13−18. doi: 10.3969/j.issn.1005-8443.2013.01.003
    [8] 刘宁. 波浪在岛礁地形上传播特性的试验研究[D]. 大连: 大连理工大学, 2014.

    Liu Ning. Experimental research on wave propagation characteristics under reef terrain[D]. Dalian: Dalian University of Technology, 2014.
    [9] 贾美军, 姚宇, 陈松贵, 等. 防浪建筑物影响下珊瑚礁海岸波浪传播变形试验[J]. 海洋工程, 2020, 38(6): 53−59, 123. doi: 10.16483/j.issn.1005-9865.2020.06.006

    Jia Meijun, Yao Yu, Chen Songgui, et al. Laboratory study of wave transformation around reef coasts under effects of breakwaters[J]. The Ocean Engineering, 2020, 38(6): 53−59, 123. doi: 10.16483/j.issn.1005-9865.2020.06.006
    [10] Gourlay M R. Wave transformation on a coral reef[J]. Coastal Engineering, 1994, 23(1/2): 17−42.
    [11] 任冰, 唐洁, 王国玉, 等. 规则波在岛礁地形上传播变化特性的试验[J]. 科学通报, 2018, 63(5/6): 590−600.

    Ren Bing, Tang Jie, Wang Guoyu, et al. Experimental investigation of monochromatic wave transformation characteristics over the coral reefs[J]. Chinese Science Bulletin, 2018, 63(5/6): 590−600.
    [12] 陈松贵, 张华庆, 陈汉宝, 等. 不规则波在筑堤珊瑚礁上传播的大水槽实验研究[J]. 海洋通报, 2018, 37(5): 576−582. doi: 10.11840/j.issn.1001-6392.2018.05.011

    Chen Songgui, Zhang Huaqing, Chen Hanbao, et al. Experimental study of irregular wave transformation on reefs with seawalls in large wave flume[J]. Marine Science Bulletin, 2018, 37(5): 576−582. doi: 10.11840/j.issn.1001-6392.2018.05.011
    [13] Su S F, Ma Gangfeng, Hsu T W. Boussinesq modeling of spatial variability of infragravity waves on fringing reefs[J]. Ocean Engineering, 2015, 101: 78−92. doi: 10.1016/j.oceaneng.2015.04.022
    [14] Su S F, Ma Gangfeng. Modeling two-dimensional infragravity motions on a fringing reef[J]. Ocean Engineering, 2018, 153: 256−267. doi: 10.1016/j.oceaneng.2018.01.111
    [15] Van Dongeren A P, Lowe R, Pomeroy A, et al. Numerical modeling of low-frequency wave dynamics over a fringing coral reef[J]. Coastal Engineering, 2013, 73: 178−190. doi: 10.1016/j.coastaleng.2012.11.004
    [16] Yao Yu, Zhang Qiming, Becker J M, et al. Boussinesq modeling of wave processes in field fringing reef environments[J]. Applied Ocean Research, 2020, 95: 102025. doi: 10.1016/j.apor.2019.102025
    [17] Liu Weijie, Shao Keqi, Ning Yue, et al. Numerical study of the impact of climate change on irregular wave run-up over reef-fringed coasts[J]. China Ocean Engineering, 2020, 34(2): 162−171. doi: 10.1007/s13344-020-0016-6
    [18] 张善举. 波浪在珊瑚礁地形上传播、破碎与增水的数学模型的研究[D]. 广州: 华南理工大学, 2019.

    Zhang Shanju. Study on the numerical model for wave propagation, breaking and setup on coral reef[D]. Guangzhou: South China University of Technology, 2019.
    [19] Cabioch G, Hopley D, Davies P, et al. Encyclopedia of Modern Coral Reefs: Structure, Form and Process[M]. Dordrecht, Nether-lands: Springer Science & Business Media, 2010.
    [20] Hearn C J. Wave-breaking hydrodynamics within coral reef systems and the effect of changing relative sea level[J]. Journal of Geophysical Research: Oceans, 1999, 104(C12): 30007−30019. doi: 10.1029/1999JC900262
    [21] Lowe R J, Shavit U, Falter J L, et al. Modeling flow in coral communities with and without waves: a synthesis of porous media and canopy flow approaches[J]. Limnology and Oceanography, 2008, 53(6): 2668−2680. doi: 10.4319/lo.2008.53.6.2668
    [22] Zhu Gancheng, Ren Bing, Wen Hongjie, et al. Analytical and experimental study of wave setup over permeable coral reef[J]. Applied Ocean Research, 2019, 90: 101859. doi: 10.1016/j.apor.2019.101859
    [23] Qu Ke, Liu Tiewei, Chen Long, et al. Study on transformation and runup processes of tsunami-like wave over permeable fringing reef using a nonhydrostatic numerical wave model[J]. Ocean Engineering, 2022, 243: 110228. doi: 10.1016/j.oceaneng.2021.110228
    [24] Wen Hongjie, Ren Bing, Dong Ping, et al. Numerical analysis of wave-induced current within the inhomogeneous coral reef using a refined SPH model[J]. Coastal Engineering, 2020, 156: 103616. doi: 10.1016/j.coastaleng.2019.103616
    [25] Van Gent M R A. The modelling of wave action on and in coastal structures[J]. Coastal Engineering, 1994, 22(3/4): 311−339.
    [26] Liu P L F, Lin Pengzhi, Chang Kuang’an, et al. Numerical modeling of wave interaction with porous structures[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1999, 125(6): 322−330. doi: 10.1061/(ASCE)0733-950X(1999)125:6(322)
    [27] Ma Gangfeng, Shi Fengyan, Hsiao S C, et al. Non-hydrostatic modeling of wave interactions with porous structures[J]. Coastal Engineering, 2014, 91: 84−98. doi: 10.1016/j.coastaleng.2014.05.004
    [28] Rodi W. Examples of calculation methods for flow and mixing in stratified fluids[J]. Journal of Geophysical Research: Oceans, 1987, 92(C5): 5305−5328. doi: 10.1029/JC092iC05p05305
    [29] Hsu T J, Sakakiyama T, Liu P L F. A numerical model for wave motions and turbulence flows in front of a composite breakwater[J]. Coastal Engineering, 2002, 46(1): 25−50. doi: 10.1016/S0378-3839(02)00045-5
    [30] Nakayama A, Kuwahara F. A macroscopic turbulence model for flow in a porous medium[J]. ASME Journal of Fluids Engineering, 1999, 121(2): 427−433. doi: 10.1115/1.2822227
    [31] Ma Gangfeng, Kirby J T, Shi Fengyan. Non-hydrostatic wave model NHWAVE: documentation and user’s manual (version 2.0)[R]. Norfolk, Virginia: Department of Civil and Environmental Engineering, Old Dominion University, 2014.
    [32] Warner J C, Geyer W R, Lerczak J A. Numerical modeling of an estuary: a comprehensive skill assessment[J]. Journal of Geophysical Research: Oceans, 2005, 110(C5): C05001.
    [33] Willmott C J. On the validation of models[J]. Physical Geography, 1981, 2(2): 184−194. doi: 10.1080/02723646.1981.10642213
    [34] Yao Yu, Liu Yicheng, Chen Long, et al. Study on the wave-driven current around the surf zone over fringing reefs[J]. Ocean Engineering, 2020, 198: 106968. doi: 10.1016/j.oceaneng.2020.106968
  • 加载中
图(25) / 表(2)
计量
  • 文章访问数:  180
  • HTML全文浏览量:  75
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-10
  • 修回日期:  2023-04-20
  • 网络出版日期:  2023-09-01
  • 刊出日期:  2023-09-30

目录

    /

    返回文章
    返回