留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

厚壳贻贝(Mytilus coruscusMcNF-κB基因的克隆及其在发育中的作用

任泓妤 刘甜甜 竹攸汀 杨金龙 梁箫

任泓妤,刘甜甜,竹攸汀,等. 厚壳贻贝(Mytilus coruscus)McNF-κB基因的克隆及其在发育中的作用[J]. 海洋学报,2023,45(9):141–151 doi: 10.12284/hyxb2023114
引用本文: 任泓妤,刘甜甜,竹攸汀,等. 厚壳贻贝(Mytilus coruscusMcNF-κB基因的克隆及其在发育中的作用[J]. 海洋学报,2023,45(9):141–151 doi: 10.12284/hyxb2023114
Ren Hongyu,Liu Tiantian,Zhu Youting, et al. Cloning of the McNF-κB gene of Mytilus coruscus and its role in development[J]. Haiyang Xuebao,2023, 45(9):141–151 doi: 10.12284/hyxb2023114
Citation: Ren Hongyu,Liu Tiantian,Zhu Youting, et al. Cloning of the McNF-κB gene of Mytilus coruscus and its role in development[J]. Haiyang Xuebao,2023, 45(9):141–151 doi: 10.12284/hyxb2023114

厚壳贻贝(Mytilus coruscusMcNF-κB基因的克隆及其在发育中的作用

doi: 10.12284/hyxb2023114
基金项目: 上海市学术带头人项目(20XD1421800);国家自然科学基金(41876159)。
详细信息
    作者简介:

    任泓妤(1999-),女,河南省焦作市人,研究方向为海洋贝类分子生物学。E-mail:m200100028@st.shou.edu.cn

    通讯作者:

    梁箫(1983-),女,博士,副教授,主要从事海洋微生物与海洋贝类互作关系研究。E-mail:x-liang@shou.edu.cn

  • 中图分类号: Q789;P714+.5

Cloning of the McNF-κB gene of Mytilus coruscus and its role in development

  • 摘要: 核因子κB(Nuclear Factor kappa-B,NF-κB)具有免疫、炎症、凋亡、细胞增殖和发育的调节作用,目前NF-κB在脊椎动物和果蝇中的研究较为丰富,在贝类中的报道较少。为进一步探究NF-κB在厚壳贻贝(Mytilus coruscus)免疫和发育中的作用,本研究克隆了厚壳贻贝McNF-κB基因的序列全长,其全长为4 087 bp,开放阅读框为2 613 bp,编码871个氨基酸,具有典型的锚蛋白重复序列(ankyrinrepeat, ANK)结构域和死亡结构域。氨基酸序列分析结果发现,该基因与欧洲贻贝(Mytilus edulis)和地中海贻贝(Mytilus galloprovincialis)分别具有72.76%和66.58%同源性,且在系统进化树中与欧洲贻贝和地中海贻贝聚为一支。经实时荧光定量PCR(qRT-PCR)技术检验表明,McNF-κB基因于厚壳贻贝各组织均有分布,在鳃中表达最高;McNF-κB基因在厚壳贻贝眼点幼虫阶段和稚贝阶段均有表达,且在稚贝阶段表达量显著高于眼点幼虫阶段。利用RNA干扰技术沉默眼点幼虫McNF-κB基因后幼虫变态率显著下降,推测McNF-κB基因调控厚壳贻贝幼虫变态过程。本研究为探究McNF-κB基因如何调控厚壳贻贝发育奠定了基础。
  • 图  1  McNF-κB基因cDNA全长及推导的氨基酸序列

    下划线表示起始密码子ATG;“*”表示终止密码子;灰色区域表示ANK结构域;黑色方框表示死亡结构域

    Fig.  1  Full-length cDNA and deduced amino acid sequences of McNF-κB gene

    The start codon ATG is underlined; the stop codon is indicated by an asterisk;the gray area represents the ANK domain; the black box represents the DEATH domain

    图  2  McNF-κB结构域

    Fig.  2  McNF-κB domain

    图  3  不同物种NF-κB氨基酸序列多重比对分析

    绿色框线表示具有多个ANK结构域;红色框线表示死亡结构域;深色背景中的氨基酸序列具有100%的同源性;粉色背景中氨基酸具有大于75%的同源性;绿色背景中氨基酸具有大于50%的同源性

    Fig.  3  Multiple alignment analysis of NF-κB amino acid sequences of different species

    Green borders indicate multiple ANK domains; red borders indicate DEATH domain; the amino acids in dark gray boxes indicate conserved residues with 100% homology; the amino acids in pink boxes show conservation of residues with > 75% homology; the amino acids in green boxes show conservation of residues with > 50% homology

    图  4  不同物种NF-κB氨基酸序列系统进化树

    Fig.  4  Phylogenetic tree of NF-κB amino acid sequences in different species

    图  5  McNF-κB基因在厚壳贻贝不同组织的表达

    不同字母表示各组间存在显著差异(p < 0.05)

    Fig.  5  Expression of McNF-κB gene in different tissues of Mytilus coruscus

    Bars with different letters are significantly different (p < 0.05)

    图  6  McNF-κB基因在厚壳贻贝幼虫变态前后阶段的表达

    不同字母表示各组间存在显著差异(p < 0.05)

    Fig.  6  Expression of McNF-κB gene in the pre- and post-metamorphosis stages of Mytilus coruscus larvae

    Bars with different letters are significantly different (p < 0.05)

    图  7  RNA干扰McNF-κB基因后的幼虫变态率(A)和存活率(B)

    不同字母表示各组间存在显著差异(p < 0.05)

    Fig.  7  Larval metamorphosis rate (A) and survival rates (B) after RNA interference with McNF-κB gene

    Bars with different letters are significantly different (p < 0.05)

    表  1  厚壳贻贝NF-κB基因cDNA全长克隆和mRNA表达分析所用的引物序列

    Tab.  1  Primers sequences used for full-length cDNA cloning and Mytilus coruscus NF-κB gene mRNA expression analysis

    引物名称序列用途
    McNF-κB-1-3′ RACETGACAGAAAAGGCAATACCCCG3′ RACE
    McNF-κB-2-3′ RACEGAGGTGACCCTGAGATGGAA3′ RACE
    McNF-κB-1-5′ RACEGAGGTTGGCAAAAGTGACAG5′ RACE
    McNF-κB-2-5′ RACECTTCAGAACATTTGCCCCC5′ RACE
    McNF-κB-RT-FGTATACCCAGACCCCAATCqRT-PCR
    McNF-κB-RT-RTCTTCTACCGTCACCACCqRT-PCR
    EF-1α-RT-FCACCACGAGTCTCTCCCTGAqRT-PCR
    EF-1α-RT-RGCTGTCACCACAGACCA TTCCqRT-PCR
    下载: 导出CSV
  • [1] 杨金龙, 李树恒, 刘志伟, 等. 厚壳贻贝胚胎和早期幼虫神经系统发育的初步研究[J]. 水产学报, 2013, 37(4): 512−519. doi: 10.3724/SP.J.1231.2013.38433

    Yang Jinlong, Li Shuheng, Liu Zhiwei, et al. Primary study on neuronal development of the embryo and early larvae of the mussel Mytilus coruscus[J]. Journal of Fisheries of China, 2013, 37(4): 512−519. doi: 10.3724/SP.J.1231.2013.38433
    [2] Yang Jinlong, Li Shuheng, Li Yifeng, et al. Effects of neuroactive compounds, ions and organic solvents on larval metamorphosis of the mussel Mytilus coruscus[J]. Aquaculture, 2013, 396−399: 106−112. doi: 10.1016/j.aquaculture.2013.02.039
    [3] 王朝新. 厚壳贻贝苗种规模化繁育技术[J]. 现代农业科技, 2021(17): 208−210.

    Wang Chaoxin. Large-scale breeding technology of the mussel Mytilus coruscus seeds[J]. Modern Agricultural Science and Technology, 2021(17): 208−210.
    [4] Wang Chong, Bao Weiyang, Gu Zhongqi, et al. Larval settlement and metamorphosis of the mussel Mytilus coruscus in response to natural biofilms[J]. Biofouling, 2012, 28(3): 249−256. doi: 10.1080/08927014.2012.671303
    [5] 刘钰珠. Toll样受体在厚壳贻贝免疫和发育中的作用研究[D]. 上海: 上海海洋大学, 2019.

    Liu Yuzhu. Effect of Toll-like receptor on immunity and development of Mytilus coruscus[D]. Shanghai: Shanghai Ocean University, 2019.
    [6] 徐跃峰, 李一峰, 梁箫, 等. 厚壳贻贝Wnt4基因时空表达[J]. 水产学报, 2016, 40(10): 1567−1575.

    Xu Yuefeng, Li Yifeng, Liang Xiao, et al. Temporal-spatial expression of Wnt4 gene in the mussel Mytilus coruscus[J]. Journal of Fisheries of China, 2016, 40(10): 1567−1575.
    [7] Xu Yuefeng, Liang Xiao, Chen Yuru, et al. Wnt7b gene expression and functional analysis in the mussel Mytilus coruscus[J]. Genetics and Molecular Research, 2016, 15(4): gmr15048866.
    [8] Zhu Youting, Zhang Ya, Liu Yuzhu, et al. Nitric oxide negatively regulates larval metamorphosis in hard-shelled mussel (Mytilus coruscus)[J]. Frontiers in Marine Science, 2020, 7: 356. doi: 10.3389/fmars.2020.00356
    [9] Yuk J M, Jo E K. Toll-like receptors and innate immunity[J]. Journal of Bacteriology and Virology, 2011, 41(4): 225−235. doi: 10.4167/jbv.2011.41.4.225
    [10] Du Qiang, Geller D. Cross-regulation between Wnt and NF-κB signaling pathways[J]. Forum on Immunopathological Diseases and Therapeutics, 2010, 1(3): 155−181. doi: 10.1615/ForumImmunDisTher.v1.i3.10
    [11] Zinatizadeh M R, Schock B, Chalbatani G M, et al. The Nuclear Factor Kappa B (NF-κB) signaling in cancer development and immune diseases[J]. Genes & Diseases, 2021, 8(3): 287−297.
    [12] Sen R, Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences[J]. Cell, 1986, 46(5): 705−716. doi: 10.1016/0092-8674(86)90346-6
    [13] Ghosh S, May M J, Kopp E B. NF-κB and REL proteins: evolutionarily conserved mediators of immune responses[J]. Annual Review of Immunology, 1998, 16: 225−260. doi: 10.1146/annurev.immunol.16.1.225
    [14] Sen R, Baltimore D. Inducibility of κ immunoglobulin enhancer-binding protein NF-κB by a posttranslational mechanism[J]. Cell, 1986, 47(6): 921−928. doi: 10.1016/0092-8674(86)90807-X
    [15] 孙伟东, 张志强, 朴大勋. NF-κB信号通路抑制结肠炎及炎症相关结肠癌的研究[J]. 医学综述, 2020, 26(8): 1521−1525.

    Sun Weidong, Zhang Zhiqiang, Piao Daxun. Research progress of NF-κB signaling pathway inhibition on colitis and inflammation-associated colon cancer[J]. Medical Recapitulate, 2020, 26(8): 1521−1525.
    [16] Govind S. Control of development and immunity by Rel transcription factors in Drosophila[J]. Oncogene, 1999, 18(49): 6875−6887. doi: 10.1038/sj.onc.1203223
    [17] Kleino A, Ramia N F, Bozkurt G, et al. Peptidoglycan-sensing receptors trigger the formation of functional amyloids of the adaptor protein Imd to initiate Drosophila NF-κB signaling[J]. Immunity, 2017, 47(4): 635−647.e6. doi: 10.1016/j.immuni.2017.09.011
    [18] Rusch J, Levine M. Regulation of the dorsal morphogen by the Toll and torso signaling pathways: a receptor tyrosine kinase selectively masks transcriptional repression[J]. Genes & Development, 1994, 8(11): 1247−1257.
    [19] Barillas-Mury C, Charlesworth A, Gross I, et al. Immune factor Gambif1, a new rel family member from the human malaria vector, Anopheles gambiae[J]. The EMBO Journal, 1996, 15(17): 4691−4701. doi: 10.1002/j.1460-2075.1996.tb00846.x
    [20] Yu Aiqing, Jin Xingkun, Li Shuang, et al. Molecular cloning and expression analysis of a dorsal homologue from Eriocheir sinensis[J]. Developmental & Comparative Immunology, 2013, 41(4): 723−727.
    [21] Shin S W, Kokoza V, Lobkov I, et al. Relish-mediated immune deficiency in the transgenic mosquito Aedes aegypti[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(5): 2616−2621.
    [22] Shin S W, Kokoza V, Bian Guowu, et al. REL1, a homologue of Drosophila dorsal, regulates Toll antifungal immune pathway in the female mosquito Aedes aegypti[J]. Journal of Biological Chemistry, 2005, 280(16): 16499−16507. doi: 10.1074/jbc.M500711200
    [23] Huang Xiande, Yin Zhixin, Liao Jixiang, et al. Identification and functional study of a shrimp Relish homologue[J]. Fish & Shellfish Immunology, 2009, 27(2): 230−238.
    [24] Huang Xiande, Yin Zhixin, Jia Xiaoting, et al. Identification and functional study of a shrimp Dorsal homologue[J]. Developmental & Comparative Immunology, 2010, 34(2): 107−113.
    [25] 梁芳梅, 朱鹏, 邱春桃, 等. 长毛明对虾核转录因子NF-κB家族基因的克隆及在细菌侵染过程中的表达变化[J]. 中国水产科学, 2022, 29(11): 1551−1563.

    Liang Fangmei, Zhu Peng, Qiu Chuntao, et al. Cloning and expression analysis of NF-κB family genes under bacterial infection of Fenneropenaeus penicillatus[J]. Journal of Fishery Sciences of China, 2022, 29(11): 1551−1563.
    [26] 赵姣姣, 陶震, 周素明, 等. 三疣梭子蟹NF-κB家族基因Relish和Dorsal的克隆及表达特征[J]. 水生生物学报, 2019, 43(2): 298−304.

    Zhao Jiaojiao, Tao Zhen, Zhou Suming, et al. Cloning and expression of NF-κB family genes in portunus trituberculatus[J]. Acta Hydrobiologica Sinica, 2019, 43(2): 298−304.
    [27] Huang Xiande, Liu Wenguang, Guan Yunyan, et al. Molecular cloning and characterization of class I NF-κB transcription factor from pearl oyster (Pinctada fucata)[J]. Fish & Shellfish Immunology, 2012, 33(3): 659−666.
    [28] Wu Xi, Xiong Xunhao, Xie Liping, et al. Pf-rel, a rel/nuclear factor-κB homolog identified from the pearl oyster, Pinctada fucata[J]. Acta Biochimica et Biophysica Sinica, 2007, 39(7): 533−539. doi: 10.1111/j.1745-7270.2007.00306.x
    [29] Montagnani C, Kappler C, Reichhart J M, et al. Cg-Rel, the first Rel/NF-κB homolog characterized in a mollusk, the Pacific oyster Crassostrea gigas[J]. FEBS Letters, 2004, 561(1/3): 75−82.
    [30] Jiang Yusheng, Wu Xinzhong. Characterization of a Rel\NF-κB homologue in a gastropod abalone, Haliotis diversicolor supertexta[J]. Developmental & Comparative Immunology, 2007, 31(2): 121−131.
    [31] De Zoysa M, Nikapitiya C, Oh C, et al. Molecular evidence for the existence of lipopolysaccharide-induced TNF-α factor (LITAF) and Rel/NF-kB pathways in disk abalone (Haliotis discus discus)[J]. Fish & Shellfish Immunology, 2010, 28(5/6): 754−763.
    [32] Zhang Siming, Coultas K A. Identification and characterization of five transcription factors that are associated with evolutionarily conserved immune signaling pathways in the schistosome-transmitting snail Biomphalaria glabrata[J]. Molecular Immunology, 2011, 48(15/16): 1868−1881.
    [33] Zhou Zhi, Wang Mengqiang, Zhao Jianmin, et al. The increased transcriptional response and translocation of a Rel/NF-κB homologue in scallop Chlamys farreri during the immune stimulation[J]. Fish & Shellfish Immunology, 2013, 34(5): 1209−1215.
    [34] Yang Jinlong, Li Yifeng, Bao Weiyang, et al. Larval metamorphosis of the mussel Mytilus galloprovincialis Lamarck, 1819 in response to neurotransmitter blockers and tetraethylammonium[J]. Biofouling, 2011, 27(2): 193−199. doi: 10.1080/08927014.2011.553717
    [35] Kumar S, Stecher G, Li M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms[J]. Molecular Biology and Evolution, 2018, 35(6): 1547−1549. doi: 10.1093/molbev/msy096
    [36] Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences[J]. Journal of Molecular Evolution, 1980, 16(2): 111−120. doi: 10.1007/BF01731581
    [37] 梁箫, 陈珂, 陈艳文, 等. 厚壳贻贝5-羟色胺2A受体(5-HT2AR)基因克隆和时空表达[J]. 水产学报, 2018, 42(12): 1869−1879.

    Liang Xiao, Chen Ke, Chen Yanwen, et al. 5-HT2AR gene clone and temporal-spatial expression in the mussel Mytilus coruscus[J]. Journal of Fisheries of China, 2018, 42(12): 1869−1879.
    [38] Li Yifeng, Cheng Yulan, Chen Ke, et al. Thyroid hormone receptor: a new player in epinephrine-induced larval metamorphosis of the hard-shelled mussel[J]. General and Comparative Endocrinology, 2020, 287: 113347. doi: 10.1016/j.ygcen.2019.113347
    [39] Liang Xiao, Chen Ke, Li Yifeng, et al. An ɑ2-adrenergic receptor is involved in larval metamorphosis in the mussel, Mytilus coruscus[J]. Biofouling, 2019, 35(9): 986−996. doi: 10.1080/08927014.2019.1685661
    [40] Gilmore T D. The Rel/NF-κB signal transduction pathway: introduction[J]. Oncogene, 1999, 18(49): 6842−6844. doi: 10.1038/sj.onc.1203237
    [41] Manfruelli P, Reichhart J M, Steward R, et al. A mosaic analysis in Drosophila fat body cells of the control of antimicrobial peptide genes by the Rel proteins Dorsal and DIF[J]. The EMBO Journal, 1999, 18(12): 3380−3391. doi: 10.1093/emboj/18.12.3380
    [42] Rutschmann S, Jung A C, Hetru C, et al. The Rel protein DIF mediates the antifungal but not the antibacterial host defense in Drosophila[J]. Immunity, 2000, 12(5): 569−580. doi: 10.1016/S1074-7613(00)80208-3
    [43] Aggarwal K, Silverman N. Positive and negative regulation of the Drosophila immune response[J]. BMB Reports, 2008, 41(4): 267−277. doi: 10.5483/BMBRep.2008.41.4.267
    [44] Silverman N, Maniatis T. NF-κB signaling pathways in mammalian and insect innate immunity[J]. Genes & Development, 2001, 15(18): 2321−2342.
    [45] Hedengren M, BengtÅsling, Dushay M S, et al. Relish, a central factor in the control of humoral but not cellular immunity in Drosophila[J]. Molecular Cell, 1999, 4(5): 827−837. doi: 10.1016/S1097-2765(00)80392-5
    [46] Davidson B, Swalla B J. A molecular analysis of ascidian metamorphosis reveals activation of an innate immune response[J]. Development, 2002, 129(20): 4739−4751. doi: 10.1242/dev.129.20.4739
    [47] 尹诚, 张丽莉, 王国栋, 等. 笠贝幼虫变态相关基因筛选及分子网络构建[J]. 集美大学学报(自然科学版), 2015, 20(5): 339−347.

    Yin Cheng, Zhang Lili, Wang Guodong, et al. Indentification of metamorphosis related genes and development of molecular networks of Lottia gigantea larval[J]. Journal of Jimei University (Natural Science), 2015, 20(5): 339−347.
    [48] Williams E A, Degnan B M, Gunter H, et al. Widespread transcriptional changes pre-empt the critical pelagic-benthic transition in the vetigastropod Haliotis asinina[J]. Molecular Ecology, 2009, 18(5): 1006−1025. doi: 10.1111/j.1365-294X.2008.04078.x
    [49] Azumi K, Sabau S V, Fujie M, et al. Gene expression profile during the life cycle of the urochordate Ciona intestinalis[J]. Developmental Biology, 2007, 308(2): 572−582. doi: 10.1016/j.ydbio.2007.05.022
    [50] 刘志显, 李嘉政, 梁邻利, 等. 厚壳贻贝McCaspase 3−4基因的克隆及其在幼虫变态中的作用[J]. 水生生物学报, 2022, 46(8): 1168−1176.

    Liu Zhixian, Li Jiazheng, Liang Linli, et al. Molecular cloning of McCaspase 3−4 and its functions in Mytilus coruscus larval metamorphosis[J]. Acta Hydrobiologica Sinica, 2022, 46(8): 1168−1176.
    [51] Hayden M S, Ghosh S. Signaling to NF-κB[J]. Genes & Development, 2004, 18(18): 2195−2224.
    [52] Bonizzi G, Karin M. The two NF-κB activation pathways and their role in innate and adaptive immunity[J]. Trends in Immunology, 2004, 25(6): 280−288. doi: 10.1016/j.it.2004.03.008
    [53] 吴静娴, 李嘉政, 胡晓梦, 等. 脂多糖对细菌生物被膜形成及厚壳贻贝幼虫变态的影响[J]. 水产学报, 2022, 46(11): 2134−2142.

    Wu Jingxian, Li Jiazheng, Hu Xiaomeng, et al. Effects of lipopolysaccharide on biofilm formation and larval metamorphosis of the mussel Mytilus coruscus[J]. Journal of Fisheries of China, 2022, 46(11): 2134−2142.
    [54] Liang Xiao, Zhang Xiukun, Peng Lihua, et al. The flagellar gene regulates biofilm formation and mussel larval settlement and metamorphosis[J]. International Journal of Molecular Sciences, 2020, 21(3): 710. doi: 10.3390/ijms21030710
    [55] Chu Zhiliang, McKinsey T A, Liu L, et al. Suppression of tumor necrosis factor-induced cell death by inhibitor of apoptosis c-IAP2 is under NF-κB control[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(19): 10057−10062.
    [56] Wang Cunyu, Mayo M W, Korneluk R G, et al. NF-κB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation[J]. Science, 1998, 281(5383): 1680−1683. doi: 10.1126/science.281.5383.1680
    [57] Papa S, Zazzeroni F, Pham C G, et al. Linking JNK signaling to NF-κB: a key to survival[J]. Journal of Cell Science, 2004, 117(22): 5197−5208. doi: 10.1242/jcs.01483
    [58] Campbell K J, Rocha S, Perkins N D. Active repression of antiapoptotic gene expression by RelA(p65) NF-κB[J]. Molecular Cell, 2004, 13(6): 853−865. doi: 10.1016/S1097-2765(04)00131-5
    [59] Hettmann T, DiDonato J, Karin M, et al. An essential role for nuclear factor κB in promoting double positive thymocyte apoptosis[J]. Journal of Experimental Medicine, 1999, 189(1): 145−158. doi: 10.1084/jem.189.1.145
    [60] Chen Xufeng, Kandasamy K, Srivastava R K. Differential roles of RelA (p65) and c-Rel subunits of nuclear factor κB in tumor necrosis factor-related apoptosis-inducing ligand signaling[J]. Cancer Research, 2003, 63(5): 1059−1066.
    [61] Kaltschmidt C, Greiner J F W, Kaltschmidt B. The transcription factor NF-κB in stem cells and development[J]. Cells, 2021, 10(8): 2042. doi: 10.3390/cells10082042
    [62] Lake B B, Ford R, Kao K R. Xrel3 is required for head development in Xenopus laevis[J]. Development, 2001, 128(2): 263−273. doi: 10.1242/dev.128.2.263
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  129
  • HTML全文浏览量:  90
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-29
  • 修回日期:  2023-04-20
  • 网络出版日期:  2023-08-24
  • 刊出日期:  2023-09-30

目录

    /

    返回文章
    返回