留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

国内外7种常用南极被动微波海冰密集度产品的比较与评估

郭昊 季青 庞小平 石立坚 闫忠男 罗重鑫

郭昊,季青,庞小平,等. 国内外7种常用南极被动微波海冰密集度产品的比较与评估[J]. 海洋学报,2023,45(6):141–159 doi: 10.12284/hyxb2023083
引用本文: 郭昊,季青,庞小平,等. 国内外7种常用南极被动微波海冰密集度产品的比较与评估[J]. 海洋学报,2023,45(6):141–159 doi: 10.12284/hyxb2023083
Guo Hao,Ji Qing,Pang Xiaoping, et al. Comparison and evaluation of seven commonly used Antarctic passive microwave sea ice concentration products[J]. Haiyang Xuebao,2023, 45(6):141–159 doi: 10.12284/hyxb2023083
Citation: Guo Hao,Ji Qing,Pang Xiaoping, et al. Comparison and evaluation of seven commonly used Antarctic passive microwave sea ice concentration products[J]. Haiyang Xuebao,2023, 45(6):141–159 doi: 10.12284/hyxb2023083

国内外7种常用南极被动微波海冰密集度产品的比较与评估

doi: 10.12284/hyxb2023083
基金项目: 国家自然科学基金(42076235);中央高校基本科研业务费专项(2042022kf0018)。
详细信息
    作者简介:

    郭昊(1998-),男,湖北省宜昌市人,主要研究方向为海冰遥感。E-mail:guo_hao@whu.edu.cn

    通讯作者:

    庞小平,教授,主要研究方向为遥感制图与应用、地理信息可视化以及极地冰雪环境动态模拟研究等。E-mail:pxp@whu.edu.cn

  • 中图分类号: P731.15

Comparison and evaluation of seven commonly used Antarctic passive microwave sea ice concentration products

  • 摘要: 围绕国内外机构发布的南极被动微波海冰密集度产品(PM-SIC)的差异和精度问题,应用MODIS和Sentinel-1反演的海冰密集度,对德国不莱梅大学(产品UB-AMSR2/ASI)、美国冰雪数据中心(产品NSIDC-SSMIS/NT、NSIDC-SSMIS/CDR、NSIDC-AMSR2/NT2)、欧洲气象卫星应用组织海洋与海冰卫星应用中心(产品OSI-SAF/BR-BST)、国家卫星海洋应用中心(产品NSOAS-SMR/NT)和国家卫星气象中心(产品NSMC-MWRI/NT2)发布的7种南极海冰密集度产品进行比较与评估。结果表明:(1)NSIDC-SSMIS/NT与NSIDC-SSMIS/CDR海冰密集度具有较高的一致性(平均偏差为−0.08%,相关系数为0.99),NSOAS-SMR/NT与NSIDC-AMSR2/NT2间的差异最大(平均偏差为−14.41%,相关系数为0.81);(2)7种PM-SIC的变化趋势一致,NSOAS-SMR/NT和NSMC-MWRI/NT2与其他PM-SIC的偏差具有明显的季节性差异;(3)NSOAS-SMR/NT和NSMC-MWRI/NT2与其他PM-SIC均在印度洋扇区、别林斯高晋海和阿蒙森海扇区绝对偏差较大,在罗斯海扇区差异最小。偏差较大的区域主要分布在海冰边缘区及近陆地海域,在高密集度区域差异较小;(4)应用MODIS与Sentinel-1反演的海冰密集度对7种PM-SIC验证表明,NSMC-MWRI/NT2与验证数据的一致性最高。NSOAS-SMR/NT、UB-AMSR2/ASI和OSI-SAF/BR-BST海冰密集度偏低,而NSMC-MWRI/NT2、NSIDC-AMSR2/NT2、NSIDC-SSMIS/CDR和NSIDC-SSMIS/NT海冰密集度偏高。不同海冰密集度产品的比较与评估可为发展遥感反演算法、研制和应用高质量的海冰密集度产品,更好地监测南极海冰动态变化提供依据和参考。
  • 图  1  本文使用的MODIS验证数据和Sentinel-1验证数据在南大洋的空间分布

    粗黑线表示不同海域的分界线

    Fig.  1  Spatial distribution of MODIS validation data and Sentinel-1 validation data used in this study

    Thick black lines rearesent the dividing line between different seas

    图  2  7种PM-SIC逐日平均海冰密集度时间序列

    Fig.  2  Time series of seven PM-SIC daily average sea ice concentration

    图  3  7种PM-SIC逐日海冰范围时间序列

    Fig.  3  Time series of daily sea ice extent calculated based on seven PM-SIC

    图  4  NSOAS-SMR/NT与其他海冰密集度产品的相关系数及月均偏差

    Fig.  4  Monthly correlation coefficient and mean deviation between NSOAS-SMR/NT and other sea ice concentration products

    图  5  NSMC-MWRI/NT2与其他海冰密集度产品的相关系数及月均偏差

    Fig.  5  Monthly correlation coefficient and mean deviation between NSMC-MWRI/NT2 and other sea ice concentration products

    图  6  NSOAS-SMR/NT与其他被动微波海冰密集度产品相关系数空间分布

    Fig.  6  Spatial distribution of correlation coefficients between NSOAS-SMR/NT and other passive microwave sea ice concentration products

    图  7  NSMC-MWRI/NT2与其他被动微波海冰密集度产品相关系数空间分布

    Fig.  7  Spatial distribution of correlation coefficients between NSMC-MWRI/NT2 and other passive microwave sea ice concentration products

    图  8  2020年NSOAS-SMR/NT与其他被动微波海冰密集度产品年均偏差空间分布

    Fig.  8  Spatial distribution of mean annual deviations between NSOAS-SMR/NT and other PM-SIC products in 2020

    图  9  2020年NSMC-MWRI/NT2与其他被动海冰密集度产品年均偏差空间分布

    Fig.  9  Spatial distribution of annual average deviation between NSMC-MWRI/NT2 and other PM-SIC products in 2020

    图  10  MODIS海冰密集度示例及对应区域海冰密集度

    Fig.  10  Example of MODIS derived SIC and PM-SIC at corresponding region

    图  11  Sentinel-1海冰密集度示例及对应区域海冰密集度

    Fig.  11  Example of Sentinel-1 derived SIC and PM-SIC at corresponding region

    表  1  国内外主流机构发布的7种被动微波遥感海冰密集度产品

    Tab.  1  Seven PM-SIC products of sea ice concentration released by mainstream institutions at hone and abroad

    序号数据集名称发布机构传感器算法采用的亮温波段分辨率/km
    1UB-AMSR2/ASI德国不莱梅大学AMSR-E/2ASI85V, 85H6.25
    2NSIDC-SSMIS/NT美国冰雪数据中心SSM/I-SSMISNT19V, 37V, 37H25
    3NSIDC-SSMIS/CDR美国冰雪数据中心SSM/I-SSMISCDR19V, 19H, 37V, 37H25
    4NSIDC-AMSR2/NT2美国冰雪数据中心AMSR-E/2NT219V, 19H, 37V, 85V, 85H12.5
    5OSI-SAF/BR-BST欧洲气象卫星应用组织海洋与海冰卫星应用中心SSMISBristol & BST19V, 37H, 37V10
    6NSOAS-SMR/NT国家卫星海洋应用中心SMRNT19V, 19H, 37V25
    7NSMC-MWRI/NT2国家卫星气象中心MWRINT219V, 19H, 37V, 85V, 85H12.5
    下载: 导出CSV

    表  2  31个验证数据信息及其冰水像元统计

    Tab.  2  31 validation datas and its ice-water pixel statistics

    影像序号日期时间(UTC)海水像元数海冰像元数阈值/极化方式
    12019年12月4日04:054 19129 9090.10
    22020年1月1日19:159 30758 6430.14
    32020年1月2日10:109 67124 4550.12
    42020年1月2日11:5027 74928 7510.13
    52020年1月3日09:156 9148 5860.13
    62020年1月4日10:0010 4294 2930.14
    72020年1月5日02:2510 16018 0900.12
    82020年1月7日15:2032418 5760.15
    92020年1月17日07:4026 46550 5120.16
    102020年2月6日10:3516 36945 5320.10
    112020年3月15日11:3512 86518 5970.15
    122020年2月1日08:3519 38817 0680.12
    132020年2月2日07:401 0199 1290.13
    142020年2月3日05:057636 6370.16
    152020年2月6日05:351 42410 2040.12
    162020年2月9日06:053 3626 7360.12
    172020年2月10日05:102 2098 9600.13
    182020年3月2日00:354 3974 8440.12
    192020年3月4日23:258 7369 9880.10
    202020年3月8日23:006 55438 2370.14
    212020年3月8日10:357 53137 1600.11
    222020年3月9日23:452 0517 9480.18
    232020年4月29日22:464 274 358807 944HH
    242020年5月24日15:121 047 2017 515 182HV
    252020年6月5日14:24772 9006 115 240HH
    262020年7月4日12:539 984 7581 771 155HH
    272020年8月27日04:402 649 4628 128 382HH
    282020年9月29日00:576 275 7473 355 105HH
    292020年10月30日21:243 357 2334 605 976HH
    302020年11月30日15:307 930 4132 891 746HV
    312020年12月24日17:294 465 6855 690 823HH
    注:HH表示水平极化,HV表示交叉极化。
    下载: 导出CSV

    表  3  7种PM-SIC整体差异—相关系数

    Tab.  3  Seven PM-SIC overall difference: correlation coefficient

    相关系数
    NSOAS-
    SMR/NT
    UB-
    AMSR2/ASI
    OSI-
    SAF/BR-BST
    NSMC-
    MWRI/NT2
    NSIDC-
    AMSR2/NT2
    NSIDC-
    SSMIS/CDR
    NSIDC-
    SSMIS/NT
    NSOAS-SMR/NT10.820.970.920.810.950.95
    UB-AMSR2/ASI0.8210.830.910.880.820.82
    OSI-SAF/BR-BST0.970.8310.930.830.950.95
    NSMC-MWRI/NT20.920.910.9310.910.930.93
    NSIDC-AMSR2/NT20.810.880.830.9110.810.81
    NSIDC-SSMIS/CDR0.950.820.950.930.8110.99
    NSIDC-SSMIS/NT0.950.820.950.930.810.991
    下载: 导出CSV

    表  4  7种PM-SIC整体差异—平均偏差

    Tab.  4  Seven PM-SIC overall difference: Mean Bias

    平均偏差/%
    NSOAS-
    SMR/NT
    UB-
    AMSR2/ASI
    OSI-
    SAF/BR-BST
    NSMC-
    MWRI/NT2
    NSIDC-
    AMSR2/NT2
    NSIDC-
    SSMIS/CDR
    NSIDC-
    SSMIS/NT
    NSOAS-SMR/NT0−9.32−1.08−11.06−14.41−5.56−5.57
    UB-AMSR2/ASI9.3208.24−1.74−5.093.663.74
    OSI-SAF/BR-BST1.08−8.240−9.97−13.32−4.57−4.49
    NSMC-MWRI/NT211.061.749.970−3.355.405.48
    NSIDC-AMSR2/NT214.415.0913.323.3508.758.83
    NSIDC-SSMIS/CDR5.65−3.664.57−5.40-8.7500.08
    NSIDC-SSMIS/NT5.57−3.474.49−5.48−8.83−0.080
    下载: 导出CSV

    表  5  7种PM-SIC与验证数据海冰密集度的相关系数

    Tab.  5  Correlation coefficient between seven PM-SIC and validation derived SIC

    相关系数
    影像序号NSOAS-
    SMR/NT
    UB-
    AMSR2/ASI
    OSI-
    SAF/BR-BST
    NSMC-
    MWRI/NT2
    NSIDC-
    AMSR2/NT2
    NSIDC-
    SSMIS/CDR
    NSIDC-
    SSMIS/NT
    10.540.760.610.680.890.610.61
    20.670.840.650.840.830.640.64
    30.890.870.900.910.920.890.90
    40.750.670.720.800.740.750.75
    50.700.860.770.830.820.760.78
    60.700.730.620.790.730.650.65
    70.650.740.570.640.660.450.43
    80.810.940.800.890.760.790.79
    90.740.920.820.750.770.820.82
    100.710.840.630.740.510.770.77
    110.580.870.660.710.490.570.56
    120.770.930.840.910.920.790.78
    130.740.790.800.730.840.760.71
    140.690.910.670.890.920.650.56
    150.710.840.670.870.790.640.62
    160.620.970.710.840.880.680.68
    170.890.950.940.970.890.900.86
    180.900.920.840.920.920.900.93
    190.870.910.800.930.460.490.32
    200.720.740.740.700.730.610.59
    210.810.870.810.850.660.850.85
    220.870.930.440.770.870.260.24
    230.770.840.770.870.920.740.74
    240.710.530.790.820.860.770.77
    250.550.750.520.680.730.410.41
    260.910.910.910.920.930.900.91
    270.970.960.980.980.970.980.98
    280.950.990.950.980.990.970.96
    290.590.610.630.560.600.630.63
    300.790.700.840.780.740.790.79
    310.710.690.720.750.710.730.73
    平均0.750.830.750.820.790.710.70
    下载: 导出CSV

    表  6  7种PM-SIC与验证数据海冰密集度间的偏差、绝对偏差、均方根误差和相关系数

    Tab.  6  Deviation, absolute deviation, root mean square error and correlation coefficient between seven PM-SIC and validation derived SIC

    NSOAS-
    SMR/NT
    UB-
    AMSR2/ASI
    OSI-SAF/BR-
    BST
    NSMC-
    MWRI/NT2
    NSIDC-
    AMSR2/NT2
    NSIDC-
    SSMIS/CDR
    NSIDC-
    SSMIS/NT
    偏差/%−7.41−6.88−7.405.0011.741.681.61
    绝对偏差/%17.2315.2217.9013.4015.2915.7016.05
    均方根误差/%21.5619.5021.7118.2321.5520.6020.80
    相关系数0.750.830.750.820.790.710.70
    下载: 导出CSV

    1  NSOAS-SMR/NT与其他被动微波海冰密集度产品在南极各海域的差异

    1  Differences between NSOAS-SMR/NT and other PM-SIC products in different Antarctic seas

    海域对比海冰密集度产品偏差/%绝对偏差/%均方根差异/%相关系数
    威德尔海扇区UB-AMSR2/ASI−10.2311.3415.340.79
    OSI-SAF/BR-BST−1.713.764.860.97
    威德尔海扇区NSMC-MWRI/NT2−11.4111.5314.120.89
    NSIDC-AMSR2/NT2−13.6713.8817.840.79
    NSIDC-SSMIS/CDR−7.127.609.880.93
    NSIDC-SSMIS/NT−6.977.709.910.93
    印度洋扇区 UB-AMSR2/ASI−9.2513.4316.510.81
    OSI-SAF/BR-BST−3.134.495.880.98
    NSMC-MWRI/NT2−12.0012.113.790.94
    NSIDC-AMSR2/NT2−19.0219.3521.950.82
    NSIDC-SSMIS/CDR−4.205.236.700.96
    NSIDC-SSMIS/NT−4.155.286.760.96
    西太平洋扇区UB-AMSR2/ASI−9.3812.6316.110.82
    OSI-SAF/BR-BST0.663.744.960.97
    NSMC-MWRI/NT2−11.3911.5013.590.93
    NSIDC-AMSR2/NT2−15.3616.2819.510.82
    NSIDC-SSMIS/CDR−3.035.356.780.95
    NSIDC-SSMIS/NT−2.845.527.000.95
    罗斯海扇区UB-AMSR2/ASI−6.347.7010.370.88
    OSI-SAF/BR-BST−0.212.243.200.98
    NSMC-MWRI/NT2−8.989.0010.450.95
    NSIDC-AMSR2/NT2−11.5811.7514.850.83
    NSIDC-SSMIS/CDR−4.735.166.470.96
    NSIDC-SSMIS/NT−4.725.186.480.96
    别林斯高晋海和阿蒙森海扇区UB-AMSR2/ASI−14.2415.5617.880.83
    OSI-SAF/BR-BST−1.333.444.390.97
    NSMC-MWRI/NT2−13.9914.2515.300.95
    NSIDC-AMSR2/NT2−17.8718.3220.180.85
    NSIDC-SSMIS/CDR−7.998.099.720.95
    NSIDC-SSMIS/NT−7.998.099.720.95
    下载: 导出CSV

    2  NSMC-MWRI/NT2与其他被动微波海冰密集度产品在南极各海域的差异

    2  Differences between NSMC-MWRI/NT2 and other PM-SIC products in different Antarctic seas

    海域海冰密集度产品偏差/%绝对偏差/%均方根差异/%相关系数
    威德尔海扇区UB-AMSR2/ASI1.184.588.370.87
    OSI-SAF/BR-BST9.709.8612.130.91
    NSOAS-SMR/NT11.4111.5314.120.89
    威德尔海扇区NSIDC-AMSR2/NT2−2.263.197.090.92
    NSIDC-SSMIS/CDR4.294.997.840.93
    NSIDC-SSMIS/NT4.445.147.930.93
    印度洋扇区UB-AMSR2/ASI2.766.069.810.92
    OSI-SAF/BR-BST8.889.3710.730.95
    NSOAS-SMR/NT12.0012.1013.790.94
    NSIDC-AMSR2/NT2−7.017.8111.100.89
    NSIDC-SSMIS/CDR7.818.6010.640.92
    NSIDC-SSMIS/NT7.868.6610.720.92
    西太平洋扇区UB-AMSR2/ASI2.015.638.860.93
    OSI-SAF/BR-BST12.0512.2313.560.94
    NSOAS-SMR/NT11.3911.513.590.93
    NSIDC-AMSR2/NT2−3.975.668.810.92
    NSIDC-SSMIS/CDR8.368.8911.590.92
    NSIDC-SSMIS/NT8.559.0611.850.91
    罗斯海扇区UB-AMSR2/ASI2.644.026.670.93
    OSI-SAF/BR-BST8.788.869.840.96
    NSOAS-SMR/NT8.989.0010.450.95
    NSIDC-AMSR2/NT2−2.603.346.910.91
    NSIDC-SSMIS/CDR4.254.636.450.95
    NSIDC-SSMIS/NT4.264.646.490.95
    别林斯高晋海和阿蒙森海扇区UB-AMSR2/ASI−0.245.338.540.90
    OSI-SAF/BR-BST12.6613.1614.30.94
    NSOAS-SMR/NT13.9914.2515.30.95
    NSIDC-AMSR2/NT2−3.875.028.660.92
    NSIDC-SSMIS/CDR6.008.079.720.92
    NSIDC-SSMIS/NT6.008.079.730.92
    下载: 导出CSV
  • [1] Turner J, Bindschadler R A, Convey P, et al. Antarctic Climate Change and the Environment[M]. Cambridge: SCAR, 2009.
    [2] Parkinson C L, Cavalieri D J. A 21 year record of Arctic sea-ice extents and their regional, seasonal and monthly variability and trends[J]. Annals of Glaciology, 2002, 34: 441−446. doi: 10.3189/172756402781817725
    [3] 王今菲, 杨清华, 于乐江, 等. 南极海冰变化及其气候效应研究述评[J]. 海洋学报, 2021, 43(7): 11−22.

    Wang Jinfei, Yang Qinghua, Yu Lejiang, et al. A review on Antarctic sea ice change and its climate effects[J]. Haiyang Xuebao, 2021, 43(7): 11−22.
    [4] 赵羲, 苏昊月, 石中玉, 等. 南极海冰密集度多源数据的交叉检验[J]. 武汉大学学报·信息科学版, 2015, 40(11): 1460−1466.

    Zhao Xi, Su Haoyue, Shi Zhongyu, et al. Intercomparison of multi-sources sea ice concentration data in Antarctic[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1460−1466.
    [5] 解思梅, 邹斌, 王毅. 南极海冰的长期变化趋势[J]. 海洋预报, 1996(3): 21−29.

    Xie Simei, Zou Bin, Wang Yi. Long-range variation trend of the Antarctic sea ice[J]. Marine Forecasts, 1996(3): 21−29.
    [6] Cavalieri D J, Parkinson C L. Arctic sea ice variability and trends, 1979−2010[J]. The Cryosphere, 2012, 6(4): 881−889. doi: 10.5194/tc-6-881-2012
    [7] Cavalieri D J, Gloersen P, Campbell W J. Determination of sea ice parameters with the NIMBUS 7 SMMR[J]. Journal of Geophysical Research: Atmospheres, 1984, 89(D4): 5355−5369. doi: 10.1029/JD089iD04p05355
    [8] Comiso J C, Cavalieri D J, Parkinson C L, et al. Passive microwave algorithms for sea ice concentration: a comparison of two techniques[J]. Remote Sensing of Environment, 1997, 60(3): 357−384. doi: 10.1016/S0034-4257(96)00220-9
    [9] Markus T, Cavalieri D J. An enhancement of the NASA Team sea ice algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(3): 1387−1398. doi: 10.1109/36.843033
    [10] Kern S, Lavergne T, Notz D, et al. Satellite passive microwave sea-ice concentration data set intercomparison: closed ice and ship-based observations[J]. The Cryosphere, 2019, 13(12): 3261−3307. doi: 10.5194/tc-13-3261-2019
    [11] Spreen G, Kaleschke L, Heygster G. Sea ice remote sensing using AMSR-E 89-GHz channels[J]. Journal of Geophysical Research: Oceans, 2008, 113(C2): C02S03.
    [12] Ivanova N, Johannessen O M, Pedersen L T, et al. Retrieval of Arctic sea ice parameters by satellite passive microwave sensors: a comparison of eleven sea ice concentration algorithms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11): 7233−7246. doi: 10.1109/TGRS.2014.2310136
    [13] Andersen S, Tonboe R, Kaleschke L, et al. Intercomparison of passive microwave sea ice concentration retrievals over the high-concentration Arctic sea ice[J]. Journal of Geophysical Research: Oceans, 2007, 112(C8): C08004.
    [14] Ivanova N, Pedersen L T, Tonboe R T, et al. Inter-comparison and evaluation of sea ice algorithms: towards further identification of challenges and optimal approach using passive microwave observations[J]. The Cryosphere, 2015, 9(5): 1797−1817. doi: 10.5194/tc-9-1797-2015
    [15] 苏昊月, 庞小平, 赵羲. 南极海冰边界AMSR-E密集度产品精度检验[J]. 武汉大学学报·信息科学版, 2016, 41(4): 559−564.

    Su Haoyue, Pang Xiaoping, Zhao Xi. Assessment of AMSR-E sea ice concentration products at ice edges in Antarctic[J]. Geomatics and Information Science of Wuhan University, 2016, 41(4): 559−564.
    [16] 赵杰臣, 周翔, 孙晓宇, 等. 北极遥感海冰密集度数据的比较和评估[J]. 遥感学报, 2017, 21(3): 351−364.

    Zhao Jiechen, Zhou Xiang, Sun Xiaoyu, et al. The inter comparison and assessment of satellite sea-ice concentration datasets from the Arctic[J]. Journal of Remote Sensing, 2017, 21(3): 351−364.
    [17] 王晓雨, 管磊, 李乐乐. FY-3B/MWRI和Aqua/AMSR-E海冰密集度比较及印证[J]. 遥感学报, 2018, 22(5): 723−736.

    Wang Xiaoyu, Guan Lei, Li Lele. Comparison and validation of sea ice concentration from FY-3B/MWRI and Aqua/AMSR-E observations[J]. Journal of Remote Sensing, 2018, 22(5): 723−736.
    [18] Andersen S, Tonboe R, Kern S, et al. Improved retrieval of sea ice total concentration from spaceborne passive microwave observations using numerical weather prediction model fields: an intercomparison of nine algorithms[J]. Remote Sensing of Environment, 2006, 104(4): 374−392. doi: 10.1016/j.rse.2006.05.013
    [19] 李钊, 严明, 刘凯, 等. 两种准实时遥感海冰密集度产品在中国第五次北极考察期间的适用性评估[J]. 海洋预报, 2018, 35(3): 8−16.

    Li Zhao, Yan Ming, Liu Kai, et al. The assessment of the applicability of AMSR2 and SSMIS near real time satellite sea ice concentration during 5th CHINARE Arctic cruise[J]. Marine Forecasts, 2018, 35(3): 8−16.
    [20] 刘婷婷, 杨子健, 王泽民, 等. 利用风云3D微波成像仪数据估算北极海冰密集度的精度评价[J]. 武汉大学学报·信息科学版, 2021, 46(12): 1843−1851.

    Liu Tingting, Yang Zijian, Wang Zemin, et al. Evaluation of Arctic sea ice concentration estimated by Fengyun-3D microwave radiation imager[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1843−1851.
    [21] 郑杨龙, 卢鹏, 李志军, 等. 基于Radarsat-2 SAR图像分类与HY-2微波辐射计反演获取北极海冰密集度的比较研究[J]. 极地研究, 2016, 28(3): 413−423.

    Zheng Yanglong, Lu Peng, Li Zhijun, et al. Comparisons of Arctic sea ice concentrations obtained by classification of radarsat-2 synthetic aperture radar imagery and retrievals from HY-2 scanning microwave radiometer[J]. Chinese Journal of Polar Research, 2016, 28(3): 413−423.
    [22] 谢涛, 赵立. 海冰密集度卫星遥感反演研究进展[J]. 海洋科学进展, 2022, 40(3): 351−366.

    Xie Tiao, Zhao Li. Advances in sea ice concentration retrieval based on satellite remote sensing[J]. Advances in Marine Science, 2022, 40(3): 351−366.
    [23] 赵进平, 任敬萍. 从航空数字影像提取北极海冰形态参数的方法研究[J]. 遥感学报, 2000, 21(4): 271−278.

    Zhao Jinping, Ren Jingping. Study on the method to analyze parameters of Arctic sea ice from airborne digital imagery[J]. Journal of Remote Sensing, 2000, 21(4): 271−278.
    [24] Partington K, Flynn T, Lamb D, et al. Late twentieth century northern Hemisphere sea-ice record from U. S. National Ice Center ice charts[J]. Journal of Geophysical Research: Oceans, 2003, 108(C11): 3343. doi: 10.1029/2002JC001623
    [25] 梁爽. 极地海冰密集度和厚度遥感反演方法研究[D]. 北京: 中国科学院大学, 2021.

    Liang Shuang. Research on polar sea ice concentration and thickness retrieval using remote sensing observations[D]. Beijing: University of Chinese Academy of Sciences, 2021.
    [26] 王剑, 邱玉宝, 熊振华, 等. 北极海冰密集度遥感数据产品对比及航道关键区验证研究[J]. 极地研究, 2020, 32(3): 301−313.

    Wang Jian, Qiu Yubao, Xiong Zhenhua, et al. Comparison and verification of remote sensing sea ice concentration products for Arctic shipping regions[J]. Chinese Journal of Polar Research, 2020, 32(3): 301−313.
    [27] 苏洁, 郝光华, 叶鑫欣, 等. 极区海冰密集度AMSR-E数据反演算法的试验与验证[J]. 遥感学报, 2013, 17(3): 495−513.

    Su Jie, Hao Guanghua, Ye Xinxin, et al. The experiment and validation of sea ice concentration AMSR-E retrieval algorithm in polar region[J]. Journal of Remote Sensing, 2013, 17(3): 495−513.
    [28] Hao Hairui, Su Jie, Shi Qian, et al. Arctic sea ice concentration retrieval using the DT-ASI algorithm based on FY-3B/MWRI data[J]. Acta Oceanologica Sinica, 2021, 40(11): 176−188. doi: 10.1007/s13131-021-1839-6
    [29] Hao Guanghua, Su Jie. A study on the dynamic tie points ASI algorithm in the Arctic Ocean[J]. Acta Oceanologica Sinica, 2015, 34(11): 126−135. doi: 10.1007/s13131-015-0659-y
    [30] Chen Ying, Zhao Xi, Pang Xiaoping, et al. Daily sea ice concentration product based on brightness temperature data of FY-3D MWRI in the Arctic[J]. Big Earth Data, 2022, 6(2): 164−178. doi: 10.1080/20964471.2020.1865623
    [31] Cavalieri D J, Markus T, Hall D K, et al. Assessment of AMSR-E Antarctic winter sea-ice concentrations using Aqua MODIS[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(9): 3331−3339. doi: 10.1109/TGRS.2010.2046495
    [32] Liang Shunlin, Strahler A H, Walthall C. Retrieval of land surface albedo from satellite observations: a simulation study[J]. Journal of Applied Meteorology, 1999, 38(6): 712−725. doi: 10.1175/1520-0450(1999)038<0712:ROLSAF>2.0.CO;2
    [33] Shi Qian, Su Jie, Heygster G, et al. Step-by-step validation of Antarctic ASI AMSR-E Sea-Ice concentrations by MODIS and an Aerial Image[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(1): 392−403.
    [34] 杨魁, 杨建兵, 江冰茹. Sentinel-1 卫星综述[J]. 城市勘测, 2015(2): 24−27.

    Yang Kui, Yang Jianbing, Jiang Bingru. Sentinel-1 satellite overview[J]. Urban Geotechnical Investigation & Surveying, 2015(2): 24−27.
    [35] 朱婷婷. 南北极典型场景SAR海冰解译研究[D]. 武汉: 武汉大学, 2017.

    Zhu Tingting. Interpretation of sea ice geophysical parameters from SAR in selected regions of the Antarctic and the Arctic[D]. Wuhan: Wuhan University, 2017.
    [36] 刘境舟, 赵亮, 王圣, 等. 威德尔海海冰年际变化特征[J]. 极地研究, 2021, 33(4): 518−528.

    Liu Jingzhou, Zhao Liang, Wang Sheng, et al. Interannual variation characteristics of sea ice in the Weddell Sea[J]. Chinese Journal of Polar Research, 2021, 33(4): 518−528.
    [37] 刘森, 邹斌, 石立坚, 等. 基于FY-3C微波辐射计数据的极区海冰密集度反演方法研究[J]. 海洋学报, 2020, 42(1): 113−122.

    Liu Sen, Zou Bin, Shi Lijian, et al. Polar sea ice concentration retrieval based on FY-3C microwave radiation imager data[J]. Haiyang Xuebao, 2020, 42(1): 113−122.
  • 加载中
图(11) / 表(8)
计量
  • 文章访问数:  201
  • HTML全文浏览量:  95
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-27
  • 修回日期:  2023-01-13
  • 网络出版日期:  2023-09-05
  • 刊出日期:  2023-06-30

目录

    /

    返回文章
    返回