留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

孟加拉湾1991−2020年风暴潮模拟及湾顶最大增水的时相特征

王玉海 邓安军 郭传胜

王玉海,邓安军,郭传胜. 孟加拉湾1991−2020年风暴潮模拟及湾顶最大增水的时相特征[J]. 海洋学报,2023,45(6):1–12 doi: 10.12284/hyxb2023067
引用本文: 王玉海,邓安军,郭传胜. 孟加拉湾1991−2020年风暴潮模拟及湾顶最大增水的时相特征[J]. 海洋学报,2023,45(6):1–12 doi: 10.12284/hyxb2023067
Wang Yuhai,Deng Anjun,Guo Chuansheng. Storm modeling of 1991−2020 tropical cyclones in the Bay of Bengal and the timing of the head-bay maximum surge[J]. Haiyang Xuebao,2023, 45(6):1–12 doi: 10.12284/hyxb2023067
Citation: Wang Yuhai,Deng Anjun,Guo Chuansheng. Storm modeling of 1991−2020 tropical cyclones in the Bay of Bengal and the timing of the head-bay maximum surge[J]. Haiyang Xuebao,2023, 45(6):1–12 doi: 10.12284/hyxb2023067

孟加拉湾1991−2020年风暴潮模拟及湾顶最大增水的时相特征

doi: 10.12284/hyxb2023067
基金项目: 孟加拉湾复杂河网区火电站取水防沙及航道维护关键技术研究(HT-18-BARISAL-HT-087)。
详细信息
    作者简介:

    王玉海(1970-),男,山西省襄汾县人,正高级工程师,博士,主要从事河口海岸水动力、岸滩演变及工程泥沙等方面的研究工作。E-mail:wangyuhai-2166@126.com

  • 中图分类号: P731.34

Storm modeling of 1991−2020 tropical cyclones in the Bay of Bengal and the timing of the head-bay maximum surge

  • 摘要: 研究风暴潮期间的增水过程、振幅和时相特征对提高风暴潮实时预报的精度和减轻灾害损失具有重要价值。采用径流、潮汐、风、波浪耦合模型模拟了孟加拉湾1991−2020年期间对湾顶布里斯瓦尔河口一带增水影响最大的28次热带气旋过程。结果显示,由风暴潮总水位减去天文潮位得到的总增水极值相对于天文潮高潮位的出现时刻集中于涨潮阶段,占总次数的89.3%,并且集中于高潮位前的3 h和4 h。增水过程呈现“(准)孤立波”和“(准)周期性振动”两大类型,其中孤立波形式的增水过程有的在涨潮阶段便完成,也有的持续一个完整的涨、落潮阶段。风暴潮增水−天文潮相互作用曲线具有与天文潮同样周期的振动特征,其振幅与潮差的大小相关,呈现出“涨峰−落谷”与“涨谷−落峰”两种类型,二者具有180°的相位差。热带气旋的行进方向与潮流同逆向、登陆时的潮相、海岸陷波(边缘波)的形成与传播等是决定总增水极值时相特征的主要动力机制。
  • 图  1  风暴潮、波浪数值模型模拟范围

    包括验潮站吉大港和赫普帕拉、海洋气象公司(OWI)波浪后报点及布里斯瓦尔河口

    Fig.  1  Simulation domain of the storm-surge and wave model

    Including the tidal gauge stations of Chittagong and Khepupara, the OWI wave hindcast site and the Buriswar Estuary

    图  2  孟加拉湾1991−2020年影响湾顶布里斯瓦尔河口的主要热带气旋路径(来源:IMD)

    Fig.  2  Tracks of selected tropical cyclones influencing the Buriswar Estuary at the head of Bengal Bay during 1991−2020 (source: IMD)

    图  3  孟加拉湾部分热带气旋吉大港站水位、增水(a, b)及OWI和ERA5波浪后报点的有效波高(c, d)验证

    Fig.  3  Calibrations of storm water level and surge height at Chittagong gauge station (a, b), and significant wave height at OWI and ERA5 hindcast site (c, d) for selected cyclones in the Bay of Bengal

    图  4  孟加拉湾湾顶赫普帕拉验潮站1987−2000年观测的总增水极值时刻(a)与数值模拟的布里斯瓦尔河口1991−2020年热带气旋总增水极值时刻(b)频率分布

    0时刻表示天文潮高潮位,负值表示涨潮阶段,正值表示落潮阶段

    Fig.  4  Occurrence frequencies of maximum total surges before peak tide of observed data (1987−2000) at the Khepupara gauge station (a) and of the modeled 1991−2020 cyclones at the Buriswar Estuary (b)

    Note 0 h represents the peak tide, negative hrs are for rising tide while positive hrs are for falling tide

    图  5  锡德热带气旋路径及布里斯瓦尔河口一带水域的高潮位分布(2007年11月15日17时)

    Fig.  5  The track of Sidr cyclone and the high water level at Buriswar Estuary (17:00, Nov. 15, 2007)

    图  6  布里斯瓦尔河口两种代表性增水过程

    c. 孤立波;d. 周期性振动。图中的“天文潮+风”与“天文潮+风+浪”曲线由于数值非常接近,几乎重叠

    Fig.  6  Two representative surge wave oscillations at Buriswar Estuary

    c. Solitary wave; d. periodic oscillation. The curve of “tide+wind” is almost covered by that of “tide+wind+wave”due to very minor difference

    图  7  布里斯瓦尔河口准孤立波增水过程

    图中的“天文潮+风”与“天文潮+风+浪”曲线由于数值非常接近,几乎重叠

    Fig.  7  Quasi-solitary surge waves at Buriswar Estuary

    The curve of “tide+wind” is almost covered by that of “tide+wind+wave” due to very minor difference

    图  8  “涨峰−落谷”型增−潮相互作用曲线

    Fig.  8  “Peak in rising-trough in falling” surge-tide interaction curves

    图  9  “落峰−涨谷”型增−潮相互作用曲线

    Fig.  9  “Peak in falling-trough in rising” surge-tide interaction curve

    图  10  1992年11月第8号热带气旋登陆前孟加拉湾湾顶增水波形成与传播过程

    Fig.  10  The development and propagation of trapped edge wave along the head bay by No. 8 cyclone in Nov. 1992

  • [1] Proudman J. Oscillations of tide and surge in an estuary of finite length[J]. Journal of Fluid Mechanics, 1957, 2(4): 371−382. doi: 10.1017/S002211205700018X
    [2] Rossiter J R. Interaction between tide and surge in the Thames[J]. Geophysical Journal of the Royal Astronomical Society, 1961, 6(1): 29−53. doi: 10.1111/j.1365-246X.1961.tb02960.x
    [3] Prandle D, Wolf J. The interaction of surge and tide in the North Sea and River Thames[J]. Geophysical Journal International, 1978, 55(1): 203−216. doi: 10.1111/j.1365-246X.1978.tb04758.x
    [4] 高焕臣. 风暴潮与天文潮非线性相互作用结果及有关问题的分析[J]. 海洋通报, 1994, 13(2): 19−23.

    Gao Huanchen. Non-linear interaction between storm surge and astronomical tide[J]. Marine Science Bulletin, 1994, 13(2): 19−23.
    [5] Horsburgh K J, Wilson C. Tide-surge interaction and its role in the distribution of surge residuals in the North Sea[J]. Journal of Geophysical Research, 2007, 112(C8): C08003.
    [6] Bernier N B, Thompson K R. Tide-surge interaction off the east coast of Canada and northeastern United States[J]. Journal of Geophysical Research: Oceans, 2007, 112(C6): C06008.
    [7] Zhang Heng, Cheng Weicong, Qiu Xixi, et al. Tide-surge interaction along the east coast of the Leizhou Peninsula, South China Sea[J]. Continental Shelf Research, 2017, 142: 32−49. doi: 10.1016/j.csr.2017.05.015
    [8] Feng Jianlong, Jiang Wensheng, Li Delei, et al. Characteristics of tide-surge interaction and its roles in the distribution of surge residuals along the coast of China[J]. Journal of Oceanography, 2019, 75(3): 225−234. doi: 10.1007/s10872-018-0495-8
    [9] 杨万康. 典型海湾风暴潮的非线性与共振效应及其危险性评估研究[D]. 青岛: 中国科学院大学, 2019.

    Yang Wankang. Study on nonlinear and resonance effects and risk assessment of storm surge in typical bay[D]. Qingdao: University of Chinese Academy of Sciences, 2019.
    [10] 白一冰, 石景元, 路川藤, 等. “烟花”台风影响下长江南通以下河段的增水分布特征[J]. 水利水运工程学报, 2021(6): 25−33.

    Bai Yibing, Shi Jingyuan, Lu Chuanteng, et al. Spatio-temporal distribution characteristics of surge in the reach below Nantong of Yangtze Estuary under the influence of Typhoon In-Fa[J]. Hydro-Science and Engineering, 2021(6): 25−33.
    [11] 张西琳, 楚栋栋, 张继才, 等. 东南沿海台风风暴潮增水过程中非线性机制和地形的作用研究: 以1509号台风“灿鸿”为例[J]. 海洋与湖沼, 2020, 51(6): 1320−1331.

    Zhang Xilin, Chu Dongdong, Zhang Jicai, et al. Effects of nonlinear terms and topography on storm surges in the southeast seas of China: a case study of Typhoon Chan-Hom[J]. Oceanologia et Limnologia Sinica, 2020, 51(6): 1320−1331.
    [12] Chiu S, Small C. Observations of cyclone-induced storm surge in coastal Bangladesh[J]. Journal of Coastal Research, 2016, 32(5): 1149−1161.
    [13] Krien Y, Testut L, Islam A K M S, et al. Towards improved storm surge models in the northern Bay of Bengal[J]. Continental Shelf Research, 2017, 135: 58−73. doi: 10.1016/j.csr.2017.01.014
    [14] Antony C, Unnikrishnan A S, Krien Y, et al. Tide-surge interaction at the head of the Bay of Bengal during Cyclone Aila[J]. Regional Studies in Marine Science, 2020, 35: 101133. doi: 10.1016/j.rsma.2020.101133
    [15] As-Salek J A, Yasuda T. Tide-surge interaction in the Meghna Estuary: most severe conditions[J]. Journal of Physical Oceanography, 2001, 31(10): 3059−3072. doi: 10.1175/1520-0485(2001)031<3059:TSIITM>2.0.CO;2
    [16] Hussain M A, Tajima Y. Numerical investigation of surge-tide interactions in the Bay of Bengal along the Bangladesh coast[J]. Natural Hazards, 2017, 86(2): 669−694. doi: 10.1007/s11069-016-2711-4
    [17] Paul G C, Khatun R, Ali E, et al. Importance of an efficient tide-surge interaction model for the coast of Bangladesh: a case study with the tropical cyclone Roanu[J]. Journal of Coastal Conservation, 2021, 25(1): 12. doi: 10.1007/s11852-020-00787-z
    [18] Sinha P C, Jain I, Bhardwaj N, et al. Numerical modeling of tide-surge interaction along Orissa coast of India[J]. Natural Hazards, 2008, 45(3): 413−427. doi: 10.1007/s11069-007-9176-4
    [19] Islam S N. Deltaic floodplains development and wetland ecosystems management in the Ganges-Brahmaputra-Meghna rivers delta in Bangladesh[J]. Sustainable Water Resources Management, 2016, 2(3): 237−256. doi: 10.1007/s40899-016-0047-6
    [20] Rose L, Bhaskaran P K. Tidal propagation and its non-linear characteristics in the Head Bay of Bengal[J]. Estuarine, Coastal and Shelf Science, 2017, 188: 181−198. doi: 10.1016/j.ecss.2017.02.024
    [21] Rogers K G, Goodbred S L Jr. The sundarbans and Bengal delta: the world’s largest tidal mangrove and delta system[M]//Kale V S. Landscapes and Landforms of India. Dordrecht: Springer, 2014: 181−187.
    [22] FVCOM Team. An unstructured grid, finite-volume community ocean model-FVCOM user manual[R]. SMAST/UMASSD-13-0701, 2013.
    [23] SWAN Team. User manual: SWAN Cycle III version 41.01[R]. The Netherlands: Delft University of Technology, 2014.
    [24] 王喜年. 风暴潮预报知识讲座 第五讲 风暴潮预报技术(2)[J]. 海洋预报, 2002, 19(2): 64−70.

    Wang Xinian. Storm prediction knowledge lecture No. 5: storm prediction technique (2)[J]. Marine Forecasts, 2002, 19(2): 64−70.
    [25] Knapp K R, Diamond H J, Kossin J P, et al. International best track archive for climate stewardship (IBTrACS) project, Version 4[R]. NOAA National Centers for Environmental Information, 2018.
    [26] Willoughby H E, Darling R W R, Rahn M E. Parametric representation of the primary hurricane vortex. Part II: a new family of sectionally continuous profiles[J]. Monthly Weather Review, 2006, 134(4): 1102−1120. doi: 10.1175/MWR3106.1
    [27] Danish Hydraulic Institute (DHI). MIKE 21-Tidal analysis and prediction module, scientific documentation[EB/OL]. https://manuals.mikepoweredbydhi.help/2019/Coast_and_Sea/TideTools_Scientific_Doc.pdf
    [28] Krien Y, Mayet C, Testut L, et al. Improved bathymetric dataset and tidal model for the northern Bay of Bengal[J]. Marine Geodesy, 2016, 39(6): 422−438. doi: 10.1080/01490419.2016.1227405
    [29] Elahi M W E, Jalón-Rojas I, Wang X H, et al. Influence of seasonal river discharge on tidal propagation in the Ganges-Brahmaputra-Meghna Delta, Bangladesh[J]. Journal of Geophysical Research: Oceans, 2020, 125(11): e2020JC016417. doi: 10.1029/2020JC016417
    [30] Antony C, Unnikrishnan A S. Observed characteristics of tide-surge interaction along the east coast of India and the head of Bay of Bengal[J]. Estuarine, Coastal and Shelf Science, 2013, 131: 6−11. doi: 10.1016/j.ecss.2013.08.004
    [31] Ke Ziming, Yankovsky A E. Relative role of subinertial and superinertial modes in the coastal long wave response forced by the landfall of a tropical cyclone[J]. Continental Shelf Research, 2011, 31(9): 929−938. doi: 10.1016/j.csr.2011.02.015
    [32] As-Salek J A. Coastal trapping and funneling effects on storm surges in the Meghna estuary in relation to cyclones hitting Noakhali–cox’s bazar coast of Bangladesh[J]. Journal of Physical Oceanography, 1998, 28(2): 227−249. doi: 10.1175/1520-0485(1998)028<0227:CTAFEO>2.0.CO;2
    [33] Indian Meteorological Department. Report on cyclonic disturbances over north Indian ocean during 2013[R/OL]. [2022–10–10]. https://rsmcnewdelhi.imd.gov.in/uploads/report/27/27_14ab8f_rsmc-2013.pdf
    [34] Feng X, Olabarrieta M, Valle-Levinson A. Storm-induced semidiurnal perturbations to surges on the US Eastern Seaboard[J]. Continental Shelf Research, 2016, 114: 54−71. doi: 10.1016/j.csr.2015.12.006
    [35] McInnes K L, Hubbert G D. A numerical modelling study of storm surges in Bass Strait[J]. Australian Meteorological Magazine, 2003, 52(3): 143−156.
  • 加载中
图(10)
计量
  • 文章访问数:  251
  • HTML全文浏览量:  109
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-15
  • 修回日期:  2022-12-12
  • 网络出版日期:  2023-06-27
  • 刊出日期:  2023-06-30

目录

    /

    返回文章
    返回