留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海−气界面气体交换速率与二氧化碳气体通量的估算

陈元瑞 赵栋梁 林子宽

陈元瑞,赵栋梁,林子宽. 海−气界面气体交换速率与二氧化碳气体通量的估算[J]. 海洋学报,2021,43(9):8–20 doi: 10.12284/hyxb2021128
引用本文: 陈元瑞,赵栋梁,林子宽. 海−气界面气体交换速率与二氧化碳气体通量的估算[J]. 海洋学报,2021,43(9):8–20 doi: 10.12284/hyxb2021128
Chen Yuanrui,Zhao Dongliang,Lin Zikuan. Estimation of gas exchange rate and carbon dioxide gas flux at the sea-air interface[J]. Haiyang Xuebao,2021, 43(9):8–20 doi: 10.12284/hyxb2021128
Citation: Chen Yuanrui,Zhao Dongliang,Lin Zikuan. Estimation of gas exchange rate and carbon dioxide gas flux at the sea-air interface[J]. Haiyang Xuebao,2021, 43(9):8–20 doi: 10.12284/hyxb2021128

海−气界面气体交换速率与二氧化碳气体通量的估算

doi: 10.12284/hyxb2021128
基金项目: 国家自然科学基金(41876010)
详细信息
    作者简介:

    陈元瑞(2000-),男,湖南省长沙市人,研究方向为海气相互作用。E-mail:chenyuanrui@163.com

    通讯作者:

    赵栋梁,教授,博士生导师。E-mail:dlzhao2013@163.com

  • 中图分类号: P732.6; P734.4+5

Estimation of gas exchange rate and carbon dioxide gas flux at the sea-air interface

  • 摘要: 海−气界面CO2通量的估算采用块体公式,其等于气体交换速率、CO2溶解度以及海水与大气的CO2分压差的乘积,其中的气体交换速率通常与风速相联系,不同作者提出了气体交换速率为风速不同幂次多项式的参数化方案。本文对比了气体交换速率为风速函数的主要研究结果,发现与风速多项式的依赖关系相比,观测数据所基于的观测方法对于气体交换速率的影响更大。在此基础上,本文用多种不同的气体交换速率参数化公式计算了1982−2018年全球的CO2通量,海洋整体上是大气CO2的汇,赤道海区是源,南北半球40°附近的海域构成沿纬向的强吸收带。37 a间,海洋CO2通量的年平均值(以碳计)为(−1.53±0.15) Pg/a, 1999年前,海洋吸收量逐年减小,1999年达到最小值,之后海洋吸收量开始增大,海洋吸收量的增大主要发生在南大洋。
  • 图  1  气体交换速率与风速二次方(a)、三次方(b)以及两种依赖关系(c)的参数化结果

    五角星为14C 数据结果;倒三角为双示踪数据结果;圆圈为涡相关结果;虚线表示风速二次方依赖关系;实线表示风速三次方依赖关系

    Fig.  1  Parameterization results for quadratic (a) , cubic dependence (b) and both of them (c) between gas transfer velocity and wind speed

    The pentagram represents 14C data; the inverted triangle represents dual tracer date; the circle represents the results of eddy covarance; dotted line represents the quadratic relationship; solid line represents the cubic relationship

    图  2  全球ΔpCO2标准气候平均值(1 atm=101 325 Pa)

    正值代表海洋CO2分压大于大气CO2分压;负值代表海洋CO2分压小于大气CO2分压

    Fig.  2  Global ΔpCO2 standard climatological normals (1 atm=101 325 Pa)

    Positive value indicates that ocean CO2 partial pressure is greater than atmospheric CO2 partial pressure; negative value indicates that the ocean CO2 partial pressure is less than the atmospheric CO2 partial pressure

    图  3  利用不同气体交换速率得到的1982−2018年海−气界面CO2通量平均值分布

    正值代表海洋释放CO2;负值代表海洋吸收CO2

    Fig.  3  The average of the results of the air-sea CO2 flux from 1982 to 2018 based on various gas transfer velocities

    Positive value indicates the release of CO2 from the ocean; negative value indicates the absorption of CO2 by the ocean

    图  4  CO2净通量的纬向分布

    南大洋和全球CO2净通量分布在南纬高纬度海区重合

    Fig.  4  The net CO2 flux obtained by zonal integration

    The distribution of net CO2 flux in the South Ocean and the global coincide in the high latitude sea area of the south latitude

    图  5  不同参数化方案算得的CO2通量随着时间的变化

    黑色实线为不同参数化方案平均的结果;其余颜色代表1982−2018 年不同参数化结果估算的年净通量随时间的变化;圆圈代表涡相关结果;五角星代表14C 结果;倒三角代表双示踪结果;二次依赖关系用点线表示;三次依赖关系用虚线表示

    Fig.  5  Variation of CO2 fluxes calculated by different parameterization schemes with time

    The solid black line in the figure shows the results averaged for different parameterization schemes; the rest of the colors represent the annual estimated results of different parameterizations from 1982−2018 net fluxes over time; the circles represent the eddy covariance results; the pentagons represent the 14C results;the inverted triangles represent the dual tracer results; the quadratic dependence is shown by dotted lines; the cubic dependence is shown by dashed lines

    图  6  2012年的CO2通量与1999年的CO2通量的差值

    Fig.  6  Subtract the CO2 flux in 1999 from the CO2 flux in 2012

    图  7  基于不同观测数据得到的CO2通量随着时间的变化

    Fig.  7  Variation of the CO2 fluxes with time for different measurement schemes

    图  8  全球大洋CO2通量的气候态平均结果随月份的变化

    红色对应海洋释放CO2;蓝色对应吸收CO2;白色则表示海洋处于既不释放也不吸收的状态

    Fig.  8  The monthly climatological average CO2 flux in global ocean

    Red color represents the ocean releases CO2; blue color represents the ocean absorbs CO2; while white color means neither of the above

    图  9  大西洋(a)、太平洋(b)、印度洋(c)和南大洋(d) CO2净通量分布

    Fig.  9  The net CO2 flux of Atlantic Ocean (a), Pacific Ocean (b), Indian Ocean (c), and Southern Ocean (d)

    图  10  大西洋(a)、太平洋(b)、印度洋(c)和南大洋(d)的气体交换系数(1 atm=101 325 Pa)

    Fig.  10  The gas transfer coefficient of Atlantic Ocean (a), Pacific Ocean (b), Indian Ocean (c), and Southern Ocean (d) (1 atm=101 325 Pa)

    图  11  1983–2018年赤道上135°E~105°W的海温变化(a)、pCO2变化(b)以及此期间对应的Niño3.4指数(c)

    Fig.  11  SST variation (a), pCO2 variation (b) and the corresponding Niño3.4 index (c) over the equator from 135°E to 105°W from 1983 to 2018

    图  12  1983−2018年的Niño3.4区域的月平均CO2释放量(蓝线)与Niño3.4指数(红线)

    阴影区域是几次比较显著的ENSO事件期间

    Fig.  12  Monthly mean CO2 flux (blue line) and Niño3.4 index (red line) for the Niño3.4 region from 1983 to 2018

    The shaded areas in the figure are during several of the significant ENSO events

    表  1  不同参数化结果估计的CO2通量的在不同海区的平均分布

    Tab.  1  Mean distribution of CO2 fluxes estimated by different parameterization results in different areas

    区域面积/(106 km2海−气CO2通量/(Pg·a−1
    大西洋太平洋印度洋南大洋总和
    50°N以北16.2−0.379 8−0.055 3−0.435 1
    50°~14°N69.1−0.163 0−0.346 0−0.008 0−0.517 0
    14°N~14°S86.70.147 30.375 70.071 00.594 0
    14°~50°S109.6−0.302 5−0.433 9−0.407 6−1.144 0
    50°~62°S29.7−0.017 9−0.017 9
    62°S以南15.3−0.013 8−0.013 8
    海区通量(所占百分比)−0.698 0(46%)−0.459 5(30%)−0.344 6(22%)−0.031 7(2%)−1.533 8
    海区总面积以及各海区比例326.523%47%16%14%100%
    下载: 导出CSV
  • [1] 闫俊岳, 刘久萌, 蒋国荣, 等. 南海海–气通量交换研究进展[J]. 地球科学进展, 2007, 22(7): 685−697.

    Yan Junyue, Liu Jiumeng, Jiang Guorong, et al. Advances in the study of air-sea flux exchange over the South China Sea[J]. Advances in Earth Science, 2007, 22(7): 685−697.
    [2] Boutin J, Quilfen Y, Merlivat L, et al. Global average of air-sea CO2 transfer velocity from QuikSCAT scatterometer wind speeds[J]. Journal of Geophysical Research: Oceans, 2009, 114(C4): C04007.
    [3] Takahashi T, Sutherland S C, Sweeney C, et al. Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2002, 49(9/10): 1601−1622.
    [4] Watson A J, Upstill-Goddard R C, Liss P S. Air-sea gas exchange in rough and stormy seas measured by a dual-tracer technique[J]. Nature, 1991, 349(6305): 145−147. doi: 10.1038/349145a0
    [5] Wanninkhof R, Asher W, Weppernig R, et al. Gas transfer experiment on Georges Bank using two volatile deliberate tracers[J]. Journal of Geophysical Research: Oceans, 1993, 98(C11): 20237−20248. doi: 10.1029/93JC01844
    [6] Jähne B, Libner P, Fischer R, et al. Investigating the transfer processes across the free aqueous viscous boundary layer by the controlled flux method[J]. Tellus B, 1989, 41(2): 177−195. doi: 10.3402/tellusb.v41i2.15068
    [7] Haußecker H, Reinelt S, Jähne B. Heat as a Proxy Tracer for Gas Exchange Measurements in the Field: Principles and Technical Realization[M]//Jähne B, Monahan E C. Air-Water Gas Transfer. Heidelberg, Germany: AEON, 1995: 405−413.
    [8] Wanninkhof R, Asher W E, Ho D T, et al. Advances in quantifying air-sea gas exchange and environmental forcing[J]. Annual Review of Marine Science, 2009, 1: 213−244. doi: 10.1146/annurev.marine.010908.163742
    [9] Schimpf U, Garbe C, Jähne B. Investigation of transport processes across the sea surface microlayer by infrared imagery[J]. Journal of Geophysical Research: Oceans, 2004, 109(C8): C08S13.
    [10] Jones E P, Smith S D. A first measurement of sea-air CO2 flux by eddy correlation[J]. Journal of Geophysical Research, 1977, 82(37): 5990−5992. doi: 10.1029/JC082i037p05990
    [11] Broecker W S, Ledwell J R, Takahashi T, et al. Isotopic versus micrometeorologic ocean CO2 fluxes: a serious conflict[J]. Journal of Geophysical Research: Oceans, 1986, 91(C9): 10517−10527. doi: 10.1029/JC091iC09p10517
    [12] Pedreros R, Dardier G, Dupuis H, et al. Momentum and heat fluxes via the eddy correlation method on the R/V LAtalante and an ASIS buoy[J]. Journal of Geophysical Research: Oceans, 2003, 108(C11): 3339. doi: 10.1029/2002JC001449
    [13] Edson J B, Hinton A A, Prada K E, et al. Direct covariance flux estimates from mobile platforms at sea[J]. Journal of Atmospheric and Oceanic Technology, 1998, 15(2): 547−562. doi: 10.1175/1520-0426(1998)015<0547:DCFEFM>2.0.CO;2
    [14] Landwehr S, O’Sullivan N, Ward B. Direct flux measurements from mobile platforms at sea: motion and airflow distortion corrections revisited[J]. Journal of Atmospheric and Oceanic Technology, 2015, 32(6): 1163−1178. doi: 10.1175/JTECH-D-14-00137.1
    [15] Landwehr S, Miller S D, Smith M J, et al. Using eddy covariance to measure the dependence of air-sea CO2 exchange rate on friction velocity[J]. Atmospheric Chemistry and Physics, 2018, 18(6): 4297−4315. doi: 10.5194/acp-18-4297-2018
    [16] Edson J B, Hinton A A, Prada K E, et al. Direct covariance flux estimates from mobile platforms at sea[J]. Journal of Atmospheric & Oceanic Technology, 1998, 15(2): 547−562.
    [17] Miller S D, Marandino C, Saltzman E S. Ship-based measurement of air-sea CO2 exchange by eddy covariance[J]. Journal of Geophysical Research: Atmospheres, 2010, 115(D2): D02304.
    [18] Liss P S, Merlivat L. Air-sea gas exchange rates: introduction and synthesis[M]//The Role of Air-Sea Exchange in Geochemical Cycling. Dordrecht: Springer, 1986: 113−127.
    [19] Nightingale P D, Malin G, Law C S, et al. In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers[J]. Global Biogeochemical Cycles, 2000, 14(1): 373−387. doi: 10.1029/1999GB900091
    [20] Ho D T, Law C S, Smith M J, et al. Measurements of air-sea gas exchange at high wind speeds in the Southern Ocean: implications for global parameterizations[J]. Geophysical Research Letters, 2006, 33(16): L16611. doi: 10.1029/2006GL026817
    [21] Wanninkhof R. Relationship between wind speed and gas exchange over the ocean[J]. Journal of Geophysical Research: Oceans, 1992, 97(C5): 7373−7382. doi: 10.1029/92JC00188
    [22] Nightingale P D, Liss P S, Schlosser P. Measurements of air-sea gas transfer during an open ocean algal bloom[J]. Geophysical Research Letters, 2000, 27(14): 2117−2120. doi: 10.1029/2000GL011541
    [23] Sweeney C, Gloor E, Jacobson A R, et al. Constraining global air-sea gas exchange for CO2 with recent bomb 14C measurements[J]. Global Biogeochemical Cycles, 2007, 21(2): GB2015.
    [24] Wanninkhof R. Relationship between wind speed and gas exchange over the ocean revisited[J]. Limnology and Oceanography: Methods, 2014, 12(6): 351−362. doi: 10.4319/lom.2014.12.351
    [25] Jacobs C M, Kohsiek W, Oost W A. Air-sea fluxes and transfer velocity of CO2 over the North Sea: results from ASGAMAGE[J]. Tellus B, 1999, 51(3): 629−641. doi: 10.3402/tellusb.v51i3.16447
    [26] Wanninkhof R, McGillis W R. A cubic relationship between air-sea CO2 exchange and wind speed[J]. Geophysical Research Letters, 1999, 26(13): 1889−1892. doi: 10.1029/1999GL900363
    [27] McGillis W R, Edson J B, Hare J E, et al. Direct covariance air-sea CO2 fluxes[J]. Journal of Geophysical Research: Oceans, 2001, 106(C8): 16729−16745. doi: 10.1029/2000JC000506
    [28] McGillis W R, Edson J B, Zappa C J, et al. Air-sea CO2 exchange in the equatorial Pacific[J]. Journal of Geophysical Research: Oceans, 2004, 109(C8): C08S02.
    [29] Edson J B, Fairall C W, Bariteau L, et al. Direct covariance measurement of CO2 gas transfer velocity during the 2008 Southern Ocean Gas Exchange Experiment: wind speed dependency[J]. Journal of Geophysical Research: Oceans, 2011, 116(C4): C00F10.
    [30] Bakker D C E, Pfeil B, Landa C S, et al. A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT)[J]. Earth System Science Data, 2016, 8: 383−413. doi: 10.5194/essd-8-383-2016
    [31] Landschützer P, Gruber N, Bakker D C E. An observation-based global monthly gridded sea surface pCO2 product from 1982 onward and its monthly climatology. Version 5.5. [EB/OL]. [2020−07−10]. https://doi.org/10.7289/V5Z899N6.
    [32] Takahashi T, Sutherland S C, Wanninkhof R, et al. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2009, 56(8/10): 554−577.
    [33] Iida Y, Takatani Y, Kojima A, et al. Global trends of ocean CO2 sink and ocean acidification: an observation-based reconstruction of surface ocean inorganic carbon variables[J]. Journal of Oceanography, 2021, 77(2): 323−358. doi: 10.1007/s10872-020-00571-5
    [34] Feely R A, Boutin J, Cosca C E, et al. Seasonal and interannual variability of CO2 in the equatorial Pacific[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2002, 49(13/14): 2443−2469.
    [35] Wallace J M, Rasmusson E M, Mitchell T P, et al. On the structure and evolution of ENSO-related climate variability in the tropical Pacific: lessons from TOGA[J]. Journal of Geophysical Research: Oceans, 1998, 103(C7): 14241−14259. doi: 10.1029/97JC02905
    [36] Rasmusson E M, Carpenter T H. Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño[J]. Monthly Weather Review, 1982, 110(5): 354−384. doi: 10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2
    [37] Krall K E, Smith A W, Takagaki N, et al. Air-sea gas exchange at wind speeds up to 85 m·s−1[J]. Ocean Science, 2019, 15(6): 1783−1799. doi: 10.5194/os-15-1783-2019
    [38] Zhao D, Toba Y, Suzuki Y, et al. Effect of wind waves on air-sea gas exchange: proposal of an overall CO2 transfer velocity formula as a function of breaking-wave parameter[J]. Tellus B, 2003, 55(2): 478−487.
    [39] Zappa C J, Asher W E, Jessup A T, et al. Microbreaking and the enhancement of air-water transfer velocity[J]. Journal of Geophysical Research: Oceans, 2004, 109(C8): C08S16.
    [40] Rutgersson A, Smedman A, Sahlée E. Oceanic convective mixing and the impact on air-sea gas transfer velocity[J]. Geophysical Research Letters, 2011, 38(2): L02602.
    [41] Salter M E, Upstill-Goddard R C, Nightingale P D, et al. Impact of an artificial surfactant release on air-sea gas fluxes during Deep Ocean Gas Exchange Experiment II[J]. Journal of Geophysical Research: Oceans, 2011, 116(C11): C11016. doi: 10.1029/2011JC007023
    [42] Gu Yuanyuan, Katul G G, Cassar N. The intensifying role of high wind speeds on air-sea carbon dioxide exchange[J]. Geophysical Research Letters, 2021, 48(5): e2020GL090713.
    [43] Bell T G, Landwehr S, Miller S D, et al. Estimation of bubble-mediated air-sea gas exchange from concurrent DMS and CO2 transfer velocities at intermediate-high wind speeds[J]. Atmospheric Chemistry and Physics, 2017, 17(14): 9019−9033. doi: 10.5194/acp-17-9019-2017
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  560
  • HTML全文浏览量:  69
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-12
  • 修回日期:  2021-04-19
  • 网络出版日期:  2021-05-27
  • 刊出日期:  2021-09-25

目录

    /

    返回文章
    返回