留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2016年南极海冰破纪录减少及其成因的研究综述

李双林 韩哲 刘娜 张超 蔡慧

李双林,韩哲,刘娜,等. 2016年南极海冰破纪录减少及其成因的研究综述[J]. 海洋学报,2021,43(7):1–10 doi: 10.12284/hyxb2021119
引用本文: 李双林,韩哲,刘娜,等. 2016年南极海冰破纪录减少及其成因的研究综述[J]. 海洋学报,2021,43(7):1–10 doi: 10.12284/hyxb2021119
Li Shuanglin,Han Zhe,Liu Na, et al. A review of the researches on the record low Antarctic sea ice in 2016 and its formation mechanisms[J]. Haiyang Xuebao,2021, 43(7):1–10 doi: 10.12284/hyxb2021119
Citation: Li Shuanglin,Han Zhe,Liu Na, et al. A review of the researches on the record low Antarctic sea ice in 2016 and its formation mechanisms[J]. Haiyang Xuebao,2021, 43(7):1–10 doi: 10.12284/hyxb2021119

2016年南极海冰破纪录减少及其成因的研究综述

doi: 10.12284/hyxb2021119
基金项目: 中国科学院战略性先导专项“地球大数据科学工程”项目七之子任务“南极气候变化及其对东亚夏季气候的影响”(XDA19070402)
详细信息
    作者简介:

    李双林(1966—),湖北省孝感市人,研究员,主要从事热带外海气相互作用研究。E-mail:shuanglin.li@mail.iap.ac.cn

  • 中图分类号: P731.15

A review of the researches on the record low Antarctic sea ice in 2016 and its formation mechanisms

Funds: Funded by the Strategic Project of Chinese Academy of Science (Grant XDA19070402)
  • 摘要: 近几十年来,在全球变暖背景下,北极海冰不断减少,但南极海冰却在小幅增加。正当人们试图解释南极海冰这一“变暖悖论”时,2016年末南极海冰范围却突然跌破纪录,达到历史最低。其中,12月海冰减少范围最大,达到2.13$ \times $106 km2,相对于1981–2010年的30年平均海冰范围减少了20.5%。这立即引起了科学界的极大关注,人们从大气环流、物理海洋和冰间湖等诸多方面,对其成因进行了大量研究,本文对这些工作进行了归纳总结。结果显示:在大气方面,主要的异常信号包括9–10月的纬向3波异常和11–12月的负位相南半球环状模以及气旋活动增加等,纬向3波大气环流受到热带太平洋和印度洋海温异常的调制,而南半球环状模异常主要是平流层极涡减弱下传导致;海洋方面,南大洋海温较常年偏暖,威德尔海出现了自1976年以来最大的冰间湖,对海冰减少起着不可忽视的作用。然而,当前的研究难以说明这一极端事件是由全球变暖或其他外部强迫主导,还是由气候系统内部变率产生,亦或者是两者的共同作用。对这些问题的回答直接关系到未来南极海冰趋势的预估,是亟待解决的科学问题和潜在的研究热点。
  • 图  1  1979年1月至2020年11月南极逐月海冰范围异常

    数据来自美国国家冰雪数据中心[11]。绿色虚线、红色虚线和黑色虚线分别代表1979–2015年,1979–2016年和1979–2020年的线性趋势,灰色阴影代表±2倍标准差区间。此图基于Schlosser等[10] 的图6重画,增补了2018年1月至2020年11月海冰范围异常指数

    Fig.  1  The evolution of monthly mean sea ice extent anomalies from January 1979 to November 2020

    The data is from the National Snow and Ice Data Center[11]. The green, red and black dashed lines indicate the long-term trend for 1979–2015, 1979–2016 and 1979–2020, and grey shading indicates the ±2 standard deviations. It was reproduced based on Fig 6 of Schlosser et al.[10], but with the data through January 2018 to November 2020 added

    图  2  2016年逐月海冰密集度异常分布及其与2015年的差值(–15%和15%两条等值线)分布

    棕色和绿色实线分别表示–15%和15%等值线。海冰密集度数据来自英国气象局哈德利中心(UK Met Office Hadley Centre)[16]

    Fig.  2  Distributions of sea ice concentration anomaly in January–December 2016 together with the differences between the sea ice concentration anomaly in 2016 and in 2015 (–15% and 15% contours)

    Green and brown solid lines indicate 15% and –15%, respectively. Sea ice concentration dataset is obtained from the UK Met Office Hadley Centre[16]

    图  3  导致南极海冰减少的因素

    a. 9–10月; b. 11–12月

    Fig.  3  Factors lead to the decrease of Antarctic sea ice

    a. September to October; b. November to December

  • [1] Simmonds I, Wu X R. Cyclone behaviour response to changes in winter southern hemisphere sea-ice concentration[J]. Quarterly Journal of the Royal Meteorological Society, 1993, 119(513): 1121−1148. doi: 10.1002/qj.49711951313
    [2] Parkinson C L. A 40-y record reveals gradual Antarctic sea ice increases followed by decreases at rates far exceeding the rates seen in the Arctic[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(29): 14414−14423. doi: 10.1073/pnas.1906556116
    [3] Bintanja R, Van Oldenborgh G J, Drijfhout S S, et al. Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion[J]. Nature Geoscience, 2013, 6(5): 376−379. doi: 10.1038/ngeo1767
    [4] Haumann F A, Gruber N, Münnich M, et al. Sea-ice transport driving Southern Ocean salinity and its recent trends[J]. Nature, 2016, 537(7618): 89−92. doi: 10.1038/nature19101
    [5] Steig E J. How fast will the Antarctic ice sheet retreat?[J]. Science, 2019, 364(6444): 936−937. doi: 10.1126/science.aax2626
    [6] Simmonds I. Comparing and contrasting the behaviour of Arctic and Antarctic sea ice over the 35 year period 1979−2013[J]. Annals of Glaciology, 2015, 56(69): 18−28. doi: 10.3189/2015AoG69A909
    [7] Turner J, Hosking J S, Bracegirdle T J, et al. Recent changes in Antarctic sea ice[J]. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences, 2015, 373(2045): 20140163. doi: 10.1098/rsta.2014.0163
    [8] Turner J, Bracegirdle T J, Phillips T, et al. An initial assessment of Antarctic sea ice extent in the CMIP5 models[J]. Journal of Climate, 2013, 26(5): 1473−1484. doi: 10.1175/JCLI-D-12-00068.1
    [9] Turner J, Phillips T, Marshall G J, et al. Unprecedented springtime retreat of Antarctic sea ice in 2016[J]. Geophysical Research Letters, 2017, 44(13): 6868−6875. doi: 10.1002/2017GL073656
    [10] Schlosser E, Haumann F A, Raphael M N. Atmospheric influences on the anomalous 2016 Antarctic sea ice decay[J]. The Cryosphere, 2018, 12(3): 1103−1119. doi: 10.5194/tc-12-1103-2018
    [11] Fetterer F, Knowles K, Meier W N, et al. Sea Ice Index, Version 3[R]. Boulder: National Snow and Ice Data Center, 2017.
    [12] Stuecker M F, Bitz C M, Armour K C. Conditions leading to the unprecedented low Antarctic sea ice extent during the 2016 austral spring season[J]. Geophysical Research Letters, 2017, 44(17): 9008−9019. doi: 10.1002/2017GL074691
    [13] Meehl G A, Arblaster J M, Chung C T Y, et al. Sustained ocean changes contributed to sudden Antarctic sea ice retreat in late 2016[J]. Nature Communications, 2019, 10(1): 14. doi: 10.1038/s41467-018-07865-9
    [14] Wang G M, Hendon H H, Arblaster J M, et al. Compounding tropical and stratospheric forcing of the record low Antarctic sea-ice in 2016[J]. Nature Communications, 2019, 10(1): 13. doi: 10.1038/s41467-41018-07689-41467
    [15] Scott R C, Nicolas J P, Bromwich D H, et al. Meteorological drivers and large-scale climate forcing of west antarctic surface melt[J]. Journal of Climate, 2019, 32(3): 665−684. doi: 10.1175/JCLI-D-18-0233.1
    [16] Rayner N A, Parker D E, Horton E B, et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D14): 4407. doi: 10.1029/2002JD002670
    [17] van Loon H, Jenne R L. The zonal harmonic standing waves in the Southern Hemisphere[J]. Journal of Geophysical Research, 1972, 77(6): 992−1003. doi: 10.1029/JC077i006p00992
    [18] Raphael M N. The influence of atmospheric zonal wave three on Antarctic sea ice variability[J]. Journal of Geophysical Research, 2007, 112(D12): D12112. doi: 10.1029/2006JD007852
    [19] Kusahara K, Reid P, Williams G D, et al. An ocean-sea ice model study of the unprecedented Antarctic sea ice minimum in 2016[J]. Environmental Research Letters, 2018, 13(8): 084020. doi: 10.1088/1748-9326/aad624
    [20] Marshall G J. Trends in the Southern Annular Mode from observations and reanalyses[J]. Journal of Climate, 2003, 16(24): 4134−4143. doi: 10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2
    [21] Son S W, Purich A, Hendon H H, et al. Improved seasonal forecast using ozone hole variability?[J]. Geophysical Research Letters, 2013, 40(23): 6231−6235. doi: 10.1002/2013GL057731
    [22] Kidston J, Scaife A A, Hardiman S C, et al. Stratospheric influence on tropospheric jet streams, storm tracks and surface weather[J]. Nature Geoscience, 2015, 8(6): 433−440. doi: 10.1038/ngeo2424
    [23] Deb P, Dash M K, Dey S P, et al. Non-annular response of sea ice cover in the Indian sector of the Antarctic during extreme SAM events[J]. International Journal of Climatology, 2017, 37(2): 648−656. doi: 10.1002/joc.4730
    [24] Turner J, Guarino M V, Arnatt J, et al. Recent decrease of summer sea ice in the Weddell Sea, Antarctica[J]. Geophysical Research Letters, 2020, 47(11): e2020GL087127.
    [25] Jones D A, Simmonds I. A climatology of Southern Hemisphere extratropical cyclones[J]. Climate Dynamics, 1993, 9(3): 131−145. doi: 10.1007/BF00209750
    [26] Madden R A, Julian P R. Detection of a 40−50 day oscillation in the zonal wind in the tropical Pacific[J]. Journal of the Atmospheric Sciences, 1971, 28(5): 702−708. doi: 10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2
    [27] Madden R A, Julian P R. Description of global-scale circulation cells in the tropics with a 40−50 day period[J]. Journal of the Atmospheric Sciences, 1972, 29(6): 1109−1123. doi: 10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2
    [28] Matthews A J, Hoskins B J, Masutani M. The global response to tropical heating in the Madden-Julian Oscillation during the northern winter[J]. Quarterly Journal of the Royal Meteorological Society, 2004, 130(601): 1991−2011. doi: 10.1256/qj.02.123
    [29] Lee H J, Seo K H. Impact of the Madden-Julian Oscillation on Antarctic sea ice and its dynamical mechanism[J]. Scientific Reports, 2019, 9(1): 10761. doi: 10.1038/s41598-019-47150-3
    [30] Yuan X J. ENSO-related impacts on Antarctic sea ice: A synthesis of phenomenon and mechanisms[J]. Antarctic Science, 2004, 16(4): 415−425. doi: 10.1017/S0954102004002238
    [31] Stammerjohn S E, Martinson D G, Smith R C, et al. Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño-Southern Oscillation and Southern Annular Mode variability[J]. Journal of Geophysical Research, 2008, 113(C3): C03S90.
    [32] Meehl G A, Arblaster J M, Bitz C M, et al. Antarctic sea-ice expansion between 2000 and 2014 driven by tropical Pacific decadal climate variability[J]. Nature Geoscience, 2016, 9(8): 590−595. doi: 10.1038/ngeo2751
    [33] Nuncio M, Yuan X J. The influence of the Indian Ocean Dipole on Antarctic sea ice[J]. Journal of Climate, 2015, 28(7): 2682−2690. doi: 10.1175/JCLI-D-14-00390.1
    [34] Li Xichen, Holland D M, Gerber E P, et al. Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice[J]. Nature, 2014, 505(7484): 538−542. doi: 10.1038/nature12945
    [35] Simpkins G R, McGregor S, Taschetto A S, et al. Tropical connections to climatic change in the extratropical Southern Hemisphere: The role of Atlantic SST trends[J]. Journal of Climate, 2014, 27(13): 4923−4936. doi: 10.1175/JCLI-D-13-00615.1
    [36] Lu B, Ren H L, Scaife A A, et al. An extreme negative Indian Ocean Dipole event in 2016: Dynamics and predictability[J]. Climate Dynamics, 2018, 51(1/2): 89−100.
    [37] Trewin B, Ganter C. Seasonal climate summary for the southern hemisphere (spring 2016): Strong negative Indian Ocean Dipole ends, bringing second wettest September to Australia[J]. Journal of Southern Hemisphere Earth Systems Science, 2020, 69(1): 273−289.
    [38] Lau N C, Nath M J. The role of the “Atmospheric Bridge” in linking tropical Pacific ENSO events to extratropical SST anomalies[J]. Journal of Climate, 1996, 9(9): 2036−2057. doi: 10.1175/1520-0442(1996)009<2036:TROTBI>2.0.CO;2
    [39] Li Z X. Influence of tropical Pacific El Niño on the SST of the Southern Ocean through atmospheric bridge[J]. Geophysical Research Letters, 2000, 27(21): 3505−3508. doi: 10.1029/1999GL011182
    [40] Stuecker M F, Jin F F, Timmermann A, et al. Combination mode dynamics of the anomalous northwest Pacific anticyclone[J]. Journal of Climate, 2015, 28(3): 1093−1111. doi: 10.1175/JCLI-D-14-00225.1
    [41] Yuan X J, Kaplan M R, Cane M A. The interconnected global climate system-A review of tropical-polar teleconnections[J]. Journal of Climate, 2018, 31(15): 5765−5792. doi: 10.1175/JCLI-D-16-0637.1
    [42] Karoly D J. Southern hemisphere circulation features associated with El Niño-Southern oscillation events[J]. Journal of Climate, 1989, 2(11): 1239−1252. doi: 10.1175/1520-0442(1989)002<1239:SHCFAW>2.0.CO;2
    [43] Turner J. The El Niño-southern oscillation and Antarctica[J]. International Journal of Climatology, 2004, 24(1): 1−31. doi: 10.1002/joc.965
    [44] Liu J P, Yuan X J, Rind D, et al. Mechanism study of the ENSO and southern high latitude climate teleconnections[J]. Geophysical Research Letters, 2002, 29(14): 1679.
    [45] Purich A, England M H. Tropical teleconnections to Antarctic sea ice during austral spring 2016 in coupled pacemaker experiments[J]. Geophysical Research Letters, 2019, 46(12): 6848−6858. doi: 10.1029/2019GL082671
    [46] Ding Q H, Steig E J, Battisti D S, et al. Influence of the tropics on the Southern Annular Mode[J]. Journal of Climate, 2012, 25(18): 6330−6348. doi: 10.1175/JCLI-D-11-00523.1
    [47] Lecomte O, Goosse H, Fichefet T, et al. Vertical ocean heat redistribution sustaining sea-ice concentration trends in the Ross Sea[J]. Nature Communications, 2017, 8(1): 258. doi: 10.1038/s41467-017-00347-4
    [48] Comiso J C, Gordon A L. Recurring polynyas over the Cosmonaut Sea and the Maud Rise[J]. Journal of Geophysical Research, 1987, 92(C3): 2819−2833. doi: 10.1029/JC092iC03p02819
    [49] Campbell E C, Wilson E A, Moore G W K, et al. Antarctic offshore polynyas linked to Southern Hemisphere climate anomalies[J]. Nature, 2019, 570(7761): 319−325. doi: 10.1038/s41586-019-1294-0
    [50] Jena B, Ravichandran M, Turner J. Recent reoccurrence of large open-ocean polynya on the Maud Rise seamount[J]. Geophysical Research Letters, 2019, 46(8): 4320−4329. doi: 10.1029/2018GL081482
    [51] Swart S, Campbell E C, Heuze C H, et al. Return of the Maud Rise polynya: Climate litmus or sea ice anomaly? [in "State of the Climate in 2017"][J]. Bulletin of the American Meteorological Society, 2018, 99(8): S188−S189.
    [52] Wang Z M, Turner J, Wu Yang, et al. Rapid decline of total Antarctic sea ice extent during 2014−16 controlled by wind-driven sea ice drift[J]. Journal of Climate, 2019, 32(17): 5381−5395. doi: 10.1175/JCLI-D-18-0635.1
    [53] Matear R J, O'Kane T J, Risbey J S, et al. Sources of heterogeneous variability and trends in Antarctic sea-ice[J]. Nature Communications, 2015, 6(1): 8656. doi: 10.1038/ncomms9656
    [54] Easterling D R, Wehner M F. Is the climate warming or cooling?[J]. Geophysical Research Letters, 2009, 36(8): L08706. doi: 10.1029/2009gl037810
    [55] Schmidt G A, Shindell D T, Tsigaridis K. Reconciling warming trends[J]. Nature Geoscience, 2014, 7(3): 158−160. doi: 10.1038/ngeo2105
    [56] Zhang C, Li S L, Luo F F, et al. The global warming hiatus has faded away: An analysis of 2014−2016 global surface air temperatures[J]. International Journal of Climatology, 2019, 39(12): 4853−4868. doi: 10.1002/joc.6114
    [57] Zhang C, Luo J J, Li S L. Impacts of tropical Indian and Atlantic Ocean warming on the occurrence of the 2017/2018 La Niña[J]. Geophysical Research Letters, 2019, 46(6): 3435−3445. doi: 10.1029/2019GL082280
    [58] 张超, 李双林. 为什么2014年没有发展成强El Niño[J]. 科学通报, 2015, 60(20): 1941−1951. doi: 10.1360/N972015-00128

    Zhang Chao, Li Shuanglin. Why is the El Niño event during the 2014 winter not a strong one?[J]. Chinese Science Bulletin, 2015, 60(20): 1941−1951. doi: 10.1360/N972015-00128
    [59] Zhang C, Li S L, Wan J H. The warmest year 2015 in the instrumental record and its comparison with year 1998[J]. Atmospheric and Oceanic Science Letters, 2016, 9(6): 487−494. doi: 10.1080/16742834.2016.1237255
    [60] Dong L, Zhou T J, Chen X L. Changes of Pacific decadal variability in the twentieth century driven by internal variability, greenhouse gases, and aerosols[J]. Geophysical Research Letters, 2014, 41(23): 8570−8577. doi: 10.1002/2014GL062269
    [61] Lim E P, Hendon H H. Causes and predictability of the negative Indian Ocean Dipole and its impact on La Niña during 2016[J]. Scientific Reports, 2017, 7(1): 12619. doi: 10.1038/s41598-017-12674-z
  • 加载中
图(3)
计量
  • 文章访问数:  404
  • HTML全文浏览量:  148
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-31
  • 修回日期:  2021-04-27
  • 网络出版日期:  2021-06-16
  • 刊出日期:  2021-07-25

目录

    /

    返回文章
    返回