留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

茎柔鱼眼睛晶体微量元素地理差异及其与水温关系

许巍 刘必林 陈新军 陈勇 操亮亮 桓梦瑶

许巍,刘必林,陈新军,等. 茎柔鱼眼睛晶体微量元素地理差异及其与水温关系[J]. 海洋学报,2021,43(6):90–97 doi: 10.12284/hyxb2021102
引用本文: 许巍,刘必林,陈新军,等. 茎柔鱼眼睛晶体微量元素地理差异及其与水温关系[J]. 海洋学报,2021,43(6):90–97 doi: 10.12284/hyxb2021102
Xu Wei,Liu Bilin,Chen Xinjun, et al. Geographical differences and their relationship with sea surface temperature of trace elements in the eye lenses of Jumbo flying squid (Dosidicus gigas)[J]. Haiyang Xuebao,2021, 43(6):90–97 doi: 10.12284/hyxb2021102
Citation: Xu Wei,Liu Bilin,Chen Xinjun, et al. Geographical differences and their relationship with sea surface temperature of trace elements in the eye lenses of Jumbo flying squid (Dosidicus gigas)[J]. Haiyang Xuebao,2021, 43(6):90–97 doi: 10.12284/hyxb2021102

茎柔鱼眼睛晶体微量元素地理差异及其与水温关系

doi: 10.12284/hyxb2021102
基金项目: 国家重点研发计划(2019YFD0901404);国家自然科学基金(41876141);上海市高校特聘教授“东方学者”岗位计划项目(0810000243);上海市科技创新行动计划(19DZ1207502)
详细信息
    作者简介:

    许巍(1980-),男,江苏省镇江市人,博士,从事渔业资源学研究。E-mial:wxu@shou.edu.cn

    通讯作者:

    刘必林,男,教授,主要从事渔业资源学研究。E-mail:bl-liu@shou.edu.cn

  • 中图分类号: S917; S931

Geographical differences and their relationship with sea surface temperature of trace elements in the eye lenses of Jumbo flying squid (Dosidicus gigas)

  • 摘要: 本研究以2015年和2017年我国远洋鱿钓渔船在东南太平洋的厄瓜多尔、秘鲁和智利公海生产时采集的茎柔鱼眼睛晶体为研究材料,采用LA-ICPMS测定了眼睛晶体外缘的微量元素,比较微量元素地理区域间差异,分析微量元素浓度与茎柔鱼栖息水温的关系。结果显示,厄瓜多尔、秘鲁和智利公海的茎柔鱼眼睛晶体外缘Mg25、Ni60 、Cu63、Sr88和Ba137等元素在3个海区之间存在显著差异(p<0.05),Na23、Al27、Si29、P31、Ca43、Mn55、Zn66和Pb等元素在两两海区之间均不存在显著差异(p>0.05)。除了Sr88、Ba137、Fe57和Ni60与海表面温度呈显著的线性负相关,其他元素与海表面温度均无显著的相关关系。分析认为,Sr88、Ba137、Fe57和Ni60均可以看作茎柔鱼生活水温的指示元素,Ba137元素还可以看作茎柔鱼生活水深以及上升流的指示元素。研究认为,眼睛晶体微量元素可用于头足类栖息环境的重建。
  • 图  1  厄瓜多尔、秘鲁和智利公海茎柔鱼采样站点分布

    Fig.  1  Sampling locations of Dosidicus gigas in the high seas of Ecuador, Peru and Chile

    图  2  茎柔鱼眼睛晶体示意图

    Fig.  2  Diagram of eye lens of Dosidicus gigas

    图  3  眼睛晶体切片制作流程

    a. 眼睛晶体后部;b. 塑料磨具;c. 经过冷埋树脂包埋的眼睛晶体;d−f. 切割后的树脂块黏于载玻片上并研磨至赤道面

    Fig.  3  Flow charts of eye lens preparation

    a. Posterior eye lens; b. plastic moulding; c. posterior eye lens embedded in the resin; d−f. the resin block is adhered to the slide and ground to the equatorial surface

    图  4  茎柔鱼眼睛晶体外缘取样点

    Fig.  4  Spot in peripheral part of eye lens formed at newly ontogenetic phase of Dosidicus gigas

    图  5  Sr88、Ba137、Fe57和Ni60浓度与海表面温度呈显著的负相关关系

    Fig.  5  The negative relationships between SST with concentration of Sr88、Ba137、Fe57 and Ni60

    表  1  厄瓜多尔、秘鲁和智利公海茎柔鱼样本信息

    Tab.  1  Sampling information of Dosidicus gigas in the high seas of Ecuador, Peru and Chile

    海区采样日期采样地点样本量/尾胴长/mm体质量/g
    厄瓜多尔2017年7−8月3°21′~8°26′S,84°07′~91°52′W10210~357264~1 295
    秘鲁2015年6−9月9°16′~15°22′S,79°45′~85°03′W13226~352280~1 301
    智利2015年11−12月37°06′~40°00′S,79°00′~83°00′W5301~470538~3 012
    下载: 导出CSV

    表  2  厄瓜多尔、秘鲁和智利公海茎柔鱼眼睛晶体外缘微量元素浓度

    Tab.  2  Concentration of trace elements in peripheral eye lenses of Dosidicus gigas in the high seas of Ecuador, Peru and Chile

    元素浓度/10−6
    三海区总体厄瓜多尔秘鲁智利
    Na2328 397±23 10319 991±14 855a31 662±28 466a36 720±19 430a
    Mg2510 629±9 9923 843±4 420a13 875±11 586b15 762±6 707b
    Al2796 260±125 462131 503±133 837a75 553±140 866a79 615±39 657a
    Si2933 878±19 11131 156±19 894a39 253±20 382a25 348±11 186a
    P31247 985±111 951221 034±140 584a268 912±109 203a247 474±33 373a
    K3915 484±12 5658 167±5 436a20 487±1 585 b17 110±5 166ab
    Ca4368 303±95 31790 218±155 137a43 776±20 838a88 240±47 102a
    Mn55510±971188±286a534±1 241a1 091±933a
    Fe571 169±1 2721 099±757ab790±834a2 296±234b
    Ni60264±357218±216a131±210a701±567 b
    Cu631 177±1 1221 836±1 494a623±604b1 302±523ab
    Zn662 051±1 6011 195±1 203a2 404±1 895a2 845±492a
    Sr88137±12475±71a138±109a257±170b
    Ba13777±14456±80a29±49a245±273b
    Pb34±2127±13a37±27a45±14a
      注:以a、b表示海区间元素浓度差异水平 (p<0.05)。
    下载: 导出CSV

    表  3  厄瓜多尔、秘鲁和智利公海茎柔鱼眼睛晶外缘微量元素方差分析结果

    Tab.  3  ANOVA results of trace elements in peripheral eye lenses of Dosidicus gigas in the high seas of Ecuador, Peru and Chile

    元素方差平方和均方差自由度1自由度2Fp
    Na231.19×1095.96×1082261.1270.34
    Mg257.29×1083.65×1082264.6350.019
    Al271.94×10109.69×1092260.5970.558
    Si298.14×1084.07×1082261.1240.341
    P311.30×10106.48×1092260.4980.614
    K398.74×1084.37×1092263.2240.057
    Ca431.46×10107.31×1092260.7920.464
    Mn552 734 390.9921 367 195.4962261.5060.241
    Fe578 268 121.634 134 060.8152262.9170.073
    Ni601 207 061.18603 530.592266.7550.005
    Cu638 410 317.7564 205 158.8782264.1120.029
    Zn6612 099 595.636 049 797.8162262.6490.09
    Sr88110 045.40155 022.7012264.5130.021
    Ba137174 712.5487 356.272265.6790.009
    Pb1 397.56698.782261.5890.224
    下载: 导出CSV
  • [1] Jereb P, Roper C F E. Cephalopods of the World: an Annotated and Illustrated Catalogue of Cephalopod Species Known to Date[M]. Rome: FAO, 2010: 315−318.
    [2] Keyl F, Argüelles J, Mariátegui L, et al. A hypothesis on range expansion and spatio-temporal shifts in size-at-maturity of jumbo squid (Dosidicus gigas) in the eastern Pacific Ocean[J]. California Cooperative Oceanic Fisheries Investigations Report, 2008, 49: 119−128.
    [3] Zeidberg L D, Robison B H. Invasive range expansion by the Humboldt squid, Dosidicus gigas, in the eastern North Pacific[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 104(31): 12948−12950.
    [4] Waluda C M, Yamashiro C, Rodhouse P G. Influence of the ENSO cycle on the light-fishery for Dosidicus gigas in the Peru Current: an analysis of remotely sensed data[J]. Fisheries Research, 2006, 79(1/2): 56−63.
    [5] Argüelles J, Rodhouse P G, Villegas P, et al. Age, growth and population structure of the jumbo flying squid Dosidicus gigas in Peruvian waters[J]. Fisheries Research, 2001, 54(1): 51−61. doi: 10.1016/S0165-7836(01)00380-0
    [6] Liu Bilin, Chen Xinjun, Chen Yong, et al. Geographic variation in statolith trace elements of the Humboldt squid, Dosidicus gigas, in high seas of Eastern Pacific Ocean[J]. Marine Biology, 2013, 160(11): 2853−2862. doi: 10.1007/s00227-013-2276-7
    [7] Taipe A, Yamashiro C, Mariategui L, et al. Distribution and concentrations of jumbo flying squid (Dosidicus gigas) off the Peruvian coast between 1991 and 1999[J]. Fisheries Research, 2001, 54(1): 21−32. doi: 10.1016/S0165-7836(01)00377-0
    [8] Nicol J A C. The Eyes of Fishes[M]. Oxford: Oxford University Press, 1989.
    [9] Horwitz J. The function of alpha-crystallin[J]. Investigative Ophthalmology & Visual Science, 1993, 34(1): 10−22.
    [10] Gillanders B M. Trace metals in four structures of fish and their use for estimates of stock structure[J]. Fishery Bulletin-National Oceanic and Atmospheric Administration, 2001, 99(3): 410−419.
    [11] Ferenbaugh J K. Elemental analysis of otoliths and eye lenses in the assessment of Steller Sea lion diets[D]. Texas: Texas Tech University, 2007.
    [12] Liu Bilin, Chen Xinjun, Chen Yong, et al. Trace elements in the statoliths of jumbo flying squid off the Exclusive Economic Zones of Chile and Peru[J]. Marine Ecology: Progress Series, 2011, 429: 93−101. doi: 10.3354/meps09106
    [13] Ikeda Y, Arai N, Sakamoto W, et al. Relationship between statoliths and environmental variables in cephalopod[J]. International Journal of PIXE, 1996, 6(1/2): 339−345.
    [14] Arkhipkin A I, Campana S E, Fitzgerald J, et al. Spatial and temporal variation in elemental signatures of statoliths from the Patagonian longfin squid (Loligo gahi)[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2004, 61(7): 1212−1224. doi: 10.1139/f04-075
    [15] Yatsu A, Mochioka N, Morishita K, et al. Strontium/calcium ratios in statoliths of the neon flying squid, Ommastrephes bartrami (Cephalopoda), in the North Pacific Ocean[J]. Marine Biology, 1998, 131(2): 275−282. doi: 10.1007/s002270050320
    [16] Doubleday Z A, Pecl G T, Semmens J M, et al. Stylet elemental signatures indicate population structure in a holobenthic octopus species, Octopus pallidus[J]. Marine Ecology Progress Series, 2008, 371: 1−10. doi: 10.3354/meps07722
    [17] Napoleão P, Pinheiro T, Reis C S. Element characterization of the vestigial shell of Octopus vulgaris Cuvier, 1797[J]. Boletín, Instituto Español de Oceanografía, 2003, 19(1/4): 509−512.
    [18] Northern T J. Investigating the post mortem applications of hard parts from two common New Zealand Squid Species: Onykia ingens and Nototodarus sloanii[D]. Dunedin, New Zealand: University of Otago, 2016.
    [19] 方舟. 基于角质颚的北太平洋柔鱼渔业生态学研究[D]. 上海: 上海海洋大学, 2016.

    Fang Zhou. Fisheries ecology of neon flying squid Ommastrephes bartramii in North Pacific Ocean based on beak[D]. Shanghai: Shanghai Ocean University, 2016.
    [20] Liu Bilin, Chen Yong, Chen Xinjun. Spatial difference in elemental signatures within early ontogenetic statolith for identifying Jumbo flying squid natal origins[J]. Fisheries Oceanography, 2015, 24(4): 335−346. doi: 10.1111/fog.12112
    [21] Zumholz K, Hansteen T H, Hillion F, et al. Elemental distribution in cephalopod statoliths: NanoSIMS provides new insights into nano-scale structure[J]. Reviews in Fish Biology and Fisheries, 2007, 17(2): 487−491.
    [22] Ikeda Y, Arai N, Kidokoro H, et al. Strontium: calcium ratios in statoliths of Japanese common squid Todarodes pacificus (Cephalopoda: Ommastrephidae) as indicators of migratory behaviour[J]. Marine Ecology Progress Series, 2003, 251: 169−179. doi: 10.3354/meps251169
    [23] Dove S G, Kingsford M J. Use of otoliths and eye lenses for measuring trace-metal incorporation in fishes: a biogeographic study[J]. Marine Biology, 1998, 130(3): 377−387. doi: 10.1007/s002270050258
    [24] Kingsford M J, Gillanders B M. Variation in concentrations of trace elements in otoliths and eye lenses of a temperate reef fish, Parma microlepis, as a function of depth, spatial scale, and age[J]. Marine Biology, 2000, 137(3): 403−414. doi: 10.1007/s002270000304
    [25] Sturm M. Migration studies of fish by measurement of strontium isotope ratios and multi-elemental patterns in otoliths using LA-ICP-MS[D]. Vienna: University of Natural Resources and Applied Life Sciences, 2008.
    [26] 金岳. 基于硬组织的中国近海枪乌贼渔业生物学研究[D]. 上海: 上海海洋大学, 2018.

    Jin Yue. Fishery biology of Loliginidae in China Seas based on hard tissues[D]. Shanghai: Shanghai Ocean University, 2018.
    [27] Zong Keqing, Klemd R, Yuan Yu, et al. The assembly of Rodinia: the correlation of early Neoproterozoic (ca. 900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB)[J]. Precambrian Research, 2017, 290: 32−48. doi: 10.1016/j.precamres.2016.12.010
    [28] Soto-Jiménez M F. Trace element trophic transfer in aquatic food webs[J]. Hidrobiológica, 2011, 21(3): 239−248.
    [29] Zumholz K, Hansteen T H, Klügel A, et al. Food effects on statolith composition of the common cuttlefish (Sepia officinalis)[J]. Marine Biology, 2006, 150(2): 237−244. doi: 10.1007/s00227-006-0342-0
    [30] Rooker J R, Secor D H, Zdanowicz V S, et al. Discrimination of northern bluefin tuna from nursery areas in the Pacific Ocean using otolith chemistry[J]. Marine Ecology Progress Series, 2001, 218: 275−282. doi: 10.3354/meps218275
    [31] Ashford J R, Jones C M, Hofman E, et al. Can otolith elemental signatures record the capture site of Patagonian toothfish (Dissostichus eleginoides), a fully marine fish in the southern ocean?[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2005, 62(12): 2832−2840. doi: 10.1139/f05-191
    [32] Yamane K, Shirai K, Nagakura Y, et al. Spatial variation of otolith elemental composition of the Pacific herring Clupea pallasii in northern Japan[J]. Aquatic Biology, 2010, 10: 283−290. doi: 10.3354/ab00291
    [33] Swart P K, Elderfield H, Greaves M J. A high-resolution calibration of Sr/Ca thermometry using the Caribbean coral Montastraea annularis[J]. Geochemistry, Geophysics, Geosystems, 2002, 3(11): 1−11.
    [34] Zacherl D C. Spatial and temporal variation in statolith and protoconch trace elements as natural tags to track larval dispersal[J]. Marine Ecology Progress Series, 2005, 290: 145−163. doi: 10.3354/meps290145
    [35] Campana S E. Chemistry and composition of fish otoliths: pathways, mechanisms and applications[J]. Marine Ecology Progress Series, 1999, 188: 263−297. doi: 10.3354/meps188263
    [36] Ikeda Y, Arai N, Sakamoto W, et al. Preliminary report on PIXE analysis for trace elements of Octopus dofleini statoliths[J]. Fisheries Science, 1999, 65(1): 161−162. doi: 10.2331/fishsci.65.161
    [37] Zumholz K, Klügel A, Hansteen T H, et al. Statolith microchemistry traces the environmental history of the boreoatlantic armhook squid Gonatus fabricii[J]. Marine Ecology Progress Series, 2007, 333: 195−204. doi: 10.3354/meps333195
    [38] Ikeda Y, Arai N, Sakamoto W, et al. Comparison on trace elements in squid statoliths of different species’ origin: as available key for taxonomic and phylogenetic study[J]. International Journal of PIXE, 1997, 7(3/4): 141−146.
    [39] Ikeda Y, Yatsu A, Arai N, et al. Concentration of statolith trace elements in the jumbo fying squid during El Niño and non-El Niño years in the eastern Pacic[J]. Journal of the Marine Biological Association of the United Kingdom, 2002, 82: 863−866.
    [40] Zacherl D C, Manríquez P H, Paradis G, et al. Trace elemental fingerprinting of gastropod statoliths to study larval dispersal trajectories[J]. Marine Ecology Progress Series, 2003, 248: 297−303. doi: 10.3354/meps248297
    [41] Bath G E, Thorrold S R, Jones C M, et al. Strontium and barium uptake in aragonitic otoliths of marine fish[J]. Geochimica et Cosmochimica Acta, 2000, 64(10): 1705−1714. doi: 10.1016/S0016-7037(99)00419-6
    [42] Zumholz K, Hansteen T H, Piatkowski U, et al. Influence of temperature and salinity on the trace element incorporation into statoliths of the common cuttlefish (Sepia officinalis)[J]. Marine Biology, 2007, 151(4): 1321−1330. doi: 10.1007/s00227-006-0564-1
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  222
  • HTML全文浏览量:  64
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-31
  • 修回日期:  2021-02-27
  • 网络出版日期:  2021-04-29
  • 刊出日期:  2021-06-30

目录

    /

    返回文章
    返回