留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表层海水硅同位素的分布特征及其影响因素

倪建宇 付锋 王渊 姚旭莹

倪建宇,付锋,王渊,等. 表层海水硅同位素的分布特征及其影响因素[J]. 海洋学报,2021,43(2):1–8 doi: 10.12284/hyxb2021020
引用本文: 倪建宇,付锋,王渊,等. 表层海水硅同位素的分布特征及其影响因素[J]. 海洋学报,2021,43(2):1–8 doi: 10.12284/hyxb2021020
Ni Jianyu,Fu Feng,Wang Yuan, et al. Distributions of silicon isotopes of dissolved silicate in the surface seawater from global oceans[J]. Haiyang Xuebao,2021, 43(2):1–8 doi: 10.12284/hyxb2021020
Citation: Ni Jianyu,Fu Feng,Wang Yuan, et al. Distributions of silicon isotopes of dissolved silicate in the surface seawater from global oceans[J]. Haiyang Xuebao,2021, 43(2):1–8 doi: 10.12284/hyxb2021020

表层海水硅同位素的分布特征及其影响因素

doi: 10.12284/hyxb2021020
基金项目: 大洋矿产资源勘探开发专项基金项目(DY135-S1-1-08,DY135-E2-1-01)。
详细信息
    作者简介:

    倪建宇(1969-),男,江苏省靖江市人,博士,研究员,主要从事海洋地球化学和环境地球化学研究。E-mail:jianyuni@sio.org.cn

  • 付锋. 溶解硅同位素在大洋中的分布. 杭州:自然资源部第二海洋研究所。
  • 中图分类号: P736.4

Distributions of silicon isotopes of dissolved silicate in the surface seawater from global oceans

  • 摘要: 本文分析了采集自太平洋、印度洋和大西洋的表层海水溶解硅酸盐的δ30Si值,结果表明,太平洋表层海水的δ30Si值为0.45‰~2.91‰,平均值为(1.52±0.59)‰;印度洋表层海水的δ30Si值为0.98‰~2.30‰,平均值为(1.52±0.36)‰;大西洋表层海水的δ30Si值为0.90‰~2.23‰,其平均值为(1.55±0.35)‰。硅同位素在各大洋表层,主要表现出与大洋表层环流和经向翻转流的相关性,其分布特征受表层水体中的生物活动以及表层洋流运动导致的不同水团之间的混合的影响,且混合作用可能对开放大洋表层水体的δ30Si分布具有显著的影响。
    1)  付锋. 溶解硅同位素在大洋中的分布. 杭州:自然资源部第二海洋研究所。
  • 图  1  表层海水采样站位分布略图

    Fig.  1  Sampling locations of the surface seawater samples

    图  2  太平洋采样站位分布

    底图为表层硅酸盐含量的年平均平面分布(数据来自WOA13,采用Ocean Data View 4.3绘制)

    Fig.  2  Sampling stations in the Pacific Ocean

    The background map shows annual average dissolved silicate content in the surface water (data from WOA13, plot is generated using Ocean Data View 4.3)

    图  3  太平洋表层海水中溶解硅酸盐的δ30Si分布

    Fig.  3  δ30Si dstribution of dissolved silicate in the surface seawater of the Pacific Ocean

    图  4  太平洋表层海水δ30Si值的平面分布

    东太平洋数据来自文献[4, 1720];西太平洋数据来自本文,表层环流引自文献[27]

    Fig.  4  δ30Si distribution of dissolved silicate in the surface seawater of the Pacific Ocean

    Data of eastern Pacific Ocean from references [4, 1720], data of western Pacific Ocean from this study, surface currents from reference [27]

    图  5  印度洋硅同位素采样站位

    底图为表层硅酸盐含量的年平均平面分布(数据来自WOA13,采用Ocean Data View 4.3绘制)

    Fig.  5  Sampling stations in the Indian Ocean

    The background map shows annual average dissolved silicate content in the surface water (data from WOA13, plot is generated using Ocean Data View 4.3)

    图  6  印度洋表层海水δ30Si值的平面分布

    表层环流引自文献[27]

    Fig.  6  δ30Si distribution of dissolved silicate in the surface seawater of the Indian Ocean

    Surface currents from reference [27]

    图  7  大西洋硅同位素采样站位

    底图为表层硅酸盐含量的年平均平面分布(数据来自WOA13,采用Ocean Data View 4.3绘制)

    Fig.  7  Sampling stations in the Atlantic Ocean

    The background map shows annual average dissolved silicate content in the surface water (data from WOA13, plot is generated using Ocean Data View 4.3)

    图  8  大西洋表层海水δ30Si值的平面分布

    表层环流引自文献[27]

    Fig.  8  δ30Si distribution of dissolved silicate in the surface seawater of the Atlantic Ocean

    Surface currents from reference [27]

  • [1] Nelson D M, Tréguer P, Brzezinski M A, et al. Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation[J]. Global Biogeochemical Cycles, 1995, 9(3): 359−372. doi: 10.1029/95GB01070
    [2] Tréguer P J, De La Rocha C L. The world ocean silica cycle[J]. Annual Review of Marine Science, 2013, 5: 477−501. doi: 10.1146/annurev-marine-121211-172346
    [3] Brzezinski M A, Krause J W, Church M J, et al. The annual silica cycle of the North Pacific subtropical gyre[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2011, 58(10): 988−1001. doi: 10.1016/j.dsr.2011.08.001
    [4] Grasse P, Ehlert C, Frank M. The influence of water mass mixing on the dissolved Si isotope composition in the Eastern Equatorial Pacific[J]. Earth and Planetary Science Letters, 2013, 380: 60−71. doi: 10.1016/j.jpgl.2013.07.033
    [5] De La Rocha C L, Brzezinski M A, DeNiro M J. Fractionation of silicon isotopes by marine diatoms during biogenic silica formation[J]. Geochimica et Cosmochimica Acta, 1997, 61(23): 5051−5056. doi: 10.1016/S0016-7037(97)00300-1
    [6] Wetzel F, De Souza G F, Reynolds B C. What controls silicon isotope fractionation during dissolution of diatom opal?[J]. Geochimica et Cosmochimica Acta, 2014, 131: 128−137. doi: 10.1016/j.gca.2014.01.028
    [7] De Souza G F, Slater R D, Dunne J P, et al. Deconvolving the controls on the deep ocean’s silicon stable isotope distribution[J]. Earth and Planetary Science Letters, 2014, 398: 66−76. doi: 10.1016/j.jpgl.2014.04.040
    [8] Cardinal D, Alleman L Y, Dehairs F, et al. Relevance of silicon isotopes to Si-nutrient utilization and Si-source assessment in Antarctic waters[J]. Global Biogeochemical Cycles, 2005, 19(2): GB2007.
    [9] De Brauwere A, Fripiat F, Cardinal D, et al. Isotopic model of oceanic silicon cycling: the Kerguelen Plateau case study[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2012, 70: 42−59. doi: 10.1016/j.dsr.2012.08.004
    [10] De Souza G F, Reynolds B C, Johnson G C, et al. Silicon stable isotope distribution traces Southern Ocean export of Si to the eastern South Pacific thermocline[J]. Biogeosciences, 2012, 9(11): 4199−4213. doi: 10.5194/bg-9-4199-2012
    [11] Coffineau N, Pondaven P. Exploring interacting influences on the silicon isotopic composition of the surface ocean: a case study from the Kerguelen Plateau[J]. Biogeosciences, 2014, 11(5): 1371−1391. doi: 10.5194/bg-11-1371-2014
    [12] Annett A L, Henley S F, Venables H J, et al. Silica cycling and isotopic composition in northern Marguerite Bay on the rapidly-warming western Antarctic Peninsula[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2017, 139: 132−142. doi: 10.1016/j.dsr2.2016.09.006
    [13] Cassarino L, Hendry K R, Meredith M P, et al. Silicon isotope and silicic acid uptake in surface waters of Marguerite Bay, West Antarctic Peninsula[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2017, 139: 143−150. doi: 10.1016/j.dsr2.2016.11.002
    [14] Cao Zhimian, Frank M, Dai Minhan, et al. Silicon isotope constraints on sources and utilization of silicic acid in the northern South China Sea[J]. Geochimica et Cosmochimica Acta, 2012, 97: 88−104. doi: 10.1016/j.gca.2012.08.039
    [15] Cao Zhimian, Frank M, Dai Minhan. Dissolved silicon isotopic compositions in the East China Sea: Water mass mixing vs. biological fractionation[J]. Limnology and Oceanography, 2015, 60(5): 1619−1633. doi: 10.1002/lno.10124
    [16] Zhang A Y, Zhang J, Hu J, et al. Silicon isotopic chemistry in the Changjiang Estuary and coastal regions: impacts of physical and biogeochemical processes on the transport of riverine dissolved silica[J]. Journal of Geophysical Research: Oceans, 2015, 120(10): 6943−6957. doi: 10.1002/2015JC011050
    [17] Beucher C P, Brzezinski M A, Jones J L. Sources and biological fractionation of Silicon isotopes in the Eastern Equatorial Pacific[J]. Geochimica et Cosmochimica Acta, 2008, 72(13): 3063−3073. doi: 10.1016/j.gca.2008.04.021
    [18] Beucher C P, Brzezinski M A, Jones J L. Mechanisms controlling silicon isotope distribution in the Eastern Equatorial Pacific[J]. Geochimica et Cosmochimica Acta, 2011, 75(15): 4286−4294. doi: 10.1016/j.gca.2011.05.024
    [19] De La Rocha C L, Brzezinski M A, DeNiro M J. A first look at the distribution of the stable isotopes of silicon in natural waters[J]. Geochimica et Cosmochimica Acta, 2000, 64(14): 2467−2477. doi: 10.1016/S0016-7037(00)00373-2
    [20] Reynolds B C, Frank M, Halliday A N. Silicon isotope fractionation during nutrient utilization in the North Pacific[J]. Earth and Planetary Science Letters, 2006, 244(1/2): 431−443.
    [21] Grasse P, Brzezinski M A, Cardinal D, et al. GEOTRACES inter-calibration of the stable silicon isotope composition of dissolved silicic acid in seawater[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(3): 562−578. doi: 10.1039/C6JA00302H
    [22] Holzer M, Brzezinski M A. Controls on the silicon isotope distribution in the ocean: new diagnostics from a data-constrained model[J]. Global Biogeochemical Cycles, 2015, 29(3): 267−287. doi: 10.1002/2014GB004967
    [23] Brzezinski M A, Jones J L. Coupling of the distribution of silicon isotopes to the meridional overturning circulation of the North Atlantic Ocean[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 116: 79−88. doi: 10.1016/j.dsr2.2014.11.015
    [24] De Souza G F, Reynolds B C, Rickli J, et al. Southern Ocean control of silicon stable isotope distribution in the deep Atlantic Ocean[J]. Global Biogeochemical Cycles, 2012, 26(2): GB2035.
    [25] 刘洪伟. 北太平洋经向翻转环流的结构特征与变异机理研究[D]. 青岛: 中国科学院海洋研究所, 2013.

    Liu Hongwei. Study on the structure property and variation mechanism of the North Pacific meridional overturning circulation[D]. Qingdao: Institution of Oceanology, Chinese Academy of Sciences, 2013.
    [26] 刘伟, 宋金明, 袁华茂, 等. 黑潮化学物质输入东海的途径与通量[J]. 地球科学进展, 2015, 30(8): 904−914. doi: 10.11867/j.issn.1001-8166.2015.08.0904

    Liu Wei, Song Jinming, Yuan Huamao, et al. Pathway and flux of inputting chemical substances from the Kuroshio to the East China Sea[J]. Advances in Earth Science, 2015, 30(8): 904−914. doi: 10.11867/j.issn.1001-8166.2015.08.0904
    [27] Talley L D, Pickard G E, Emery W J, et al. Descriptive Physical Oceanography: An Introduction[M]. 6th ed. Burlingham, MA: Elsevier, 2011: 560.
    [28] De La Rocha C L, Bescont P, Croguennoc A, et al. The silicon isotopic composition of surface waters in the Atlantic and Indian sectors of the Southern Ocean[J]. Geochimica et Cosmochimica Acta, 2011, 75(18): 5283−5295. doi: 10.1016/j.gca.2011.06.028
    [29] 胡瑞金, 刘秦玉, 武术. 北印度洋越赤道经向翻转环流的年际变化[J]. 中国海洋大学学报, 2005, 35(5): 697−702.

    Hu Ruijin, Liu Qinyu, Wu Shu. Study on the Interannual variability of the cross equatorial meridional overturning circulation in the north Indian Ocean[J]. Periodical of Ocean University of China, 2005, 35(5): 697−702.
    [30] Griffiths J D, Barker S, Hendry K R, et al. Evidence of silicic acid leakage to the tropical Atlantic via Antarctic Intermediate Water during Marine Isotope Stage 4[J]. Paleoceanography and Paleoclimatology, 2013, 28(2): 307−318.
  • 加载中
图(8)
计量
  • 文章访问数:  253
  • HTML全文浏览量:  102
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-30
  • 修回日期:  2020-10-21
  • 网络出版日期:  2020-12-04
  • 刊出日期:  2021-03-02

目录

    /

    返回文章
    返回