留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

鹿角杯形珊瑚氨转运体基因PdRhp-1的鉴定与功能初探

曾赛男 秦郅暄 王艺 刘兆群 周智

曾赛男,秦郅暄,王艺,等. 鹿角杯形珊瑚氨转运体基因PdRhp-1的鉴定与功能初探[J]. 海洋学报,2025,47(x):1–11 doi: 10.12284/hyxb0000-00
引用本文: 曾赛男,秦郅暄,王艺,等. 鹿角杯形珊瑚氨转运体基因PdRhp-1的鉴定与功能初探[J]. 海洋学报,2025,47(x):1–11 doi: 10.12284/hyxb0000-00
Zeng Sainan,Qin Zhixuan,Wang Yi, et al. Identification and Functional Characterization of Ammonia transporter Genes PdRhp-1 in Pocillopora damicornis[J]. Haiyang Xuebao,2025, 47(x):1–11 doi: 10.12284/hyxb0000-00
Citation: Zeng Sainan,Qin Zhixuan,Wang Yi, et al. Identification and Functional Characterization of Ammonia transporter Genes PdRhp-1 in Pocillopora damicornis[J]. Haiyang Xuebao,2025, 47(x):1–11 doi: 10.12284/hyxb0000-00

鹿角杯形珊瑚氨转运体基因PdRhp-1的鉴定与功能初探

doi: 10.12284/hyxb0000-00
基金项目: 海南省重点研发计划项目(ZDYF2022SHFZ324)。
详细信息
    作者简介:

    曾赛男(2001—),女,四川省绵阳市人,硕士研究生,主要从事珊瑚礁耐热分子机理研究。E-mail:zengsainan@163.com

    通讯作者:

    刘兆群,博士,教授,主要从事珊瑚礁资源利用研究,E-mail:liuzhaoqun@hainanu.edu.cn

    周智,博士,研究员,主要从事珊瑚礁保护研究,E-mail:zhouzhi@hainanu.edu.cn

Identification and Functional Characterization of Ammonia transporter Genes PdRhp-1 in Pocillopora damicornis

  • 摘要: 为揭示高温对鹿角杯形珊瑚(Pocillopora damicornis)氨同化作用的影响,阐明造礁石珊瑚的热适应机制,本研究鉴定并克隆了1个鹿角杯形珊瑚氨转运体基因 PdRhp-1,其开放阅读框(ORF)全长1410 bp,编码一条由469 aa组成的多肽链。序列分析结果表明,PdRhp-1 是一种疏水性跨膜蛋白,含有12个跨膜结构域,属于 Rhesus 型氨转运体,其氨基酸序列与人(Homo sapiens)的氨转运体基因 RhCG 的一致性为44.14%。为解析 PdRhp-1 的生物学功能,将其重组表达载体转染至 HEK293T 细胞,并在培养基中添加氯化铵,发现表达 PdRhp-1 的细胞总氨摄取率显著高于对照组,说明 PdRhp-1 具有氨转运功能。同时,分析了高温处理鹿角杯形珊瑚的转录组数据,发现高温显著抑制了 PdRhp-1 及部分氨同化相关基因的表达。以上结果确认,鹿角杯形珊瑚 PdRhp-1 是一个 Rhesus 型氨转运体,高温可能通过抑制 PdRhp-1 介导的氨转运过程影响珊瑚与虫黄藻的共生稳态。
  • 图  1  PdRhp-1 的 Ammonium-transp 结构域(A)、跨膜区(B)、二级结构(C)和三级结构(D)

    Fig.  1  The Ammonium-transp domain (A), transmembrane region (B), secondary structure (C) and tertiary structure (D) of PdRhp-1

    图  2  PdRhp1 与其他生物氨转运体共同构建的最大似然树

    Rh 家族聚为5支,分别对应Rh30(橙)、RhAG(紫)、RhBG(蓝)、RhCG(绿)、Rhp1(粉)等亚型。AMT 家族聚为一支(棕)。

    Fig.  2  The maximum likelihood tree constructed by PdRhp1 and other biological ammonia transporters

    The Rh family is divided into five subfamilies, corresponding to the subtypes Rh30(orange), RhAG(purple), RhBG(blue), RhCG(green), Rhp1(pink), and AMT family clustered into one branch (brown).

    图  3  鹿角杯形珊瑚 PdRhp-1 与人 RhCG 的多序列比对

    N-糖基化位点(棕色Δ);苯丙氨酸门(蓝色Δ);胞质分流残基:保守(绿色)和不匹配(粉色);双组氨酸(红色☆);天冬氨酸残基(黑色○);疏水通道内壁残基:保守(浅蓝)和不匹配(橙色);间隙用黑点表示

    Fig.  3  Multiple Sequence Alignment of P. damicornis PdRhp-1 and Homo sapiens RhCG

    N-glycosylation (brown Δ); Phenylalanine gate (blue Δ); Cytoplasmic shunt residues: conserved (green) and mismatched (pink); double histidine residues (red ☆); aspartic acid residues (black ○); hydrophobic channel lining residues: conserved (light blue) and mismatched (orange); gaps marked with black dots

    图  4  pEGFP-N1-PdRhp-1 重组质粒图谱(A)和平均 Tamm 摄取率(B)

    平均 Tamm 摄取率表示每6.25×106个细胞/毫升1 min的 Tamm 摄取率;*表示存在显著差异,p < 0.05

    Fig.  4  Recombinant plasmid map of pEGFP-N1- PdRhp-1(A) and average Tamm uptake rate(B)

    The average Tamm uptake rate was expressed as the Tamm uptake rate per 6.25 × 106 cells/mL for 1 min; * means there is a significant difference, p < 0.05

    图  5  氨同化相关基因在热胁迫过程中的差异基因表达热图

    S0:初始状态;S1:水螅体收缩;S2:共肉分离;S3:水螅体完全脱离

    Fig.  5  Differential gene expression heat map of ammonia assimilation related genes in the process of heat stress

    S0: initial stage; S1: polyp contraction; S2: coenosarc separation; S3: polyp detachment

    表  1  本研究使用到的主要引物及信息

    Tab.  1  Primer sequence and related information

    引物名称序列(5’-3’)引物用途
    PdEF-CerFCAGGATGTTTACAAGATTGGAGGT内参引物
    PdEF-CerRTTGTCACTTTGCCAGCGACTT内参引物
    F1TAAGTCGCACCCCTCTATCAGTC基因克隆
    R1CCCAAAATCCCTTCTTGCTTAT基因克隆
    F2ATGGGCTTCAAATTTTCTCTCATCAG基因克隆
    R2TTAAACTTTAGATACTGCTTCCGCTT基因克隆
    HindⅢ-FCCCAAGCTTGCCACCATGGGCTTCAAATTTTCTCTCATCAGTG重组表达载体构建
    BamHI-RCGCGGATCCGCTTTAGATACTGCTTCCGCTTCGCC重组表达载体构建
    M13-47CGCCAGGGTTTTCCCAGTCACGACpMD19-T 载体引物
    RV-MAGCGGATAACAATTTCACACAGGApMD19-T 载体引物
    pEGFP-N5CGGTGGGAGGTCTATATAAGpEGFP-N1 载体引物
    pEGFP-N3GTCGCCGTCCAGCTCGACCAGpEGFP-N1 载体引物
    下载: 导出CSV
  • [1] Fisher R, O’Leary R A, Low-Choy S, et al. Species richness on coral reefs and the pursuit of convergent global estimates[J]. Current Biology, 2015, 25(4): 500−505. doi: 10.1016/j.cub.2014.12.022
    [2] Graham N A J, Nash K L. The importance of structural complexity in coral reef ecosystems[J]. Coral Reefs, 2013, 32(2): 315−326. doi: 10.1007/s00338-012-0984-y
    [3] Ortiz D M, Tissot B N. Evaluating ontogenetic patterns of habitat use by reef fish in relation to the effectiveness of marine protected areas in West Hawaii[J]. Journal of Experimental Marine Biology and Ecology, 2012, 432-433: 83-93.
    [4] McLachlan R H, Dobson K L, Schmeltzer E R, et al. A review of coral bleaching specimen collection, preservation, and laboratory processing methods[J]. PeerJ, 2021, 9: e11763. doi: 10.7717/peerj.11763
    [5] Cleves P A, Krediet C J, Lehnert E M, et al. Insights into coral bleaching under heat stress from analysis of gene expression in a sea anemone model system[J]. Proceedings of the National Academy of Sciences, 2020, 117(46): 28906−28917. doi: 10.1073/pnas.2015737117
    [6] Qin Binni, Yu Kefu, Zuo Xiuling. Study of the bleaching alert capability of the CRW and CoRTAD coral bleaching heat stress products in China's coral reefs[J]. Marine Environmental Research, 2023, 186: 105939. doi: 10.1016/j.marenvres.2023.105939
    [7] Zuo Xiuling, Qin Binni, Teng Juncan, et al. Optimized spatial and temporal pattern for coral bleaching heat stress alerts for China's coral reefs[J]. Marine Environmental Research, 2023, 191: 106152. doi: 10.1016/j.marenvres.2023.106152
    [8] Pernice M, Meibom A, Van Den Heuvel A, et al. A single-cell view of ammonium assimilation in coral–dinoflagellate symbiosis[J]. The ISME Journal, 2012, 6(7): 1314−1324. doi: 10.1038/ismej.2011.196
    [9] 李淑, 余克服. 珊瑚礁白化研究进展[J]. 生态学报, 2007, 27(5): 2059−2069. doi: 10.3321/j.issn:1000-0933.2007.05.047

    Li Shu, Yu Kefu. Recent development in coral reef bleaching research[J]. Acta Ecologica Sinica, 2007, 27(5): 2059−2069. doi: 10.3321/j.issn:1000-0933.2007.05.047
    [10] Muscatine L, Porter J W. Reef corals: mutualistic symbioses adapted to nutrient-poor environments[J]. Bioscience, 1977, 27(7): 454−460. doi: 10.2307/1297526
    [11] Xiang Tingting, Lehnert E, Jinkerson R E, et al. Symbiont population control by host-symbiont metabolic interaction in Symbiodiniaceae-cnidarian associations[J]. Nature Communications, 2020, 11(1): 108. doi: 10.1038/s41467-019-13963-z
    [12] Lin Senjie, Cheng Shifeng, Song Bo, et al. The Symbiodinium kawagutii genome illuminates dinoflagellate gene expression and coral symbiosis[J]. Science, 2015, 350(6261): 691−694. doi: 10.1126/science.aad0408
    [13] Rädecker N, Pogoreutz C, Gegner H M, et al. Heat stress destabilizes symbiotic nutrient cycling in corals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(5): e2022653118.
    [14] Kemp D W, Hoadley K D, Lewis A M, et al. Thermotolerant coral–algal mutualisms maintain high rates of nutrient transfer while exposed to heat stress[J]. Proceedings of the Royal Society B: Biological Sciences, 2023, 290(2007): 20231403. doi: 10.1098/rspb.2023.1403
    [15] Tanaka Y, Suzuki A, Sakai K. The stoichiometry of coral-dinoflagellate symbiosis: carbon and nitrogen cycles are balanced in the recycling and double translocation system[J]. The ISME Journal, 2018, 12(3): 860−868. doi: 10.1038/s41396-017-0019-3
    [16] Wright P A. Nitrogen excretion: three end products, many physiological roles[J]. Journal of Experimental Biology, 1995, 198(2): 273−281. doi: 10.1242/jeb.198.2.273
    [17] Szmant A M, Ferrer L M, FitzGerald L M. Nitrogen excretion and O: N ratios in reef corals: evidence for conservation of nitrogen[J]. Marine Biology, 1990, 104(1): 119−127. doi: 10.1007/BF01313165
    [18] D'elia C F, Domotor S L, Webb K L. Nutrient uptake kinetics of freshly isolated zooxanthellae[J]. Marine Biology, 1983, 75(2): 157−167.
    [19] Miller D J, Yellowlees D. Inorganic nitrogen uptake by symbiotic marine cnidarians: a critical review[J]. Proceedings of the Royal Society of London. B. Biological Sciences, 1989, 237(1286): 109−125. doi: 10.1098/rspb.1989.0040
    [20] Khademi S, O'Connell III J, Remis J, et al. Mechanism of ammonia transport by Amt/MEP/Rh: structure of AmtB at 1.35 Å[J]. Science, 2004, 305(5690): 1587−1594. doi: 10.1126/science.1101952
    [21] Ludewig U, Von Wirén N, Frommer W B. Uniport of ${{\rm {NH}}_4^+} $ by the root hair plasma membrane ammonium transporter LeAMT1;1[J]. Journal of Biological Chemistry, 2002, 277(16): 13548−13555. doi: 10.1074/jbc.M200739200
    [22] Weiner I D, Verlander J W. Ammonia transport in the kidney by Rhesus glycoproteins[J]. American Journal of Physiology-Renal Physiology, 2014, 306(10): F1107−F1120. doi: 10.1152/ajprenal.00013.2014
    [23] Lupo D, Li Xiaodan, Durand A, et al. The 1.3-Å resolution structure of Nitrosomonas europaea Rh50 and mechanistic implications for NH3 transport by Rhesus family proteins[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(49): 19303−19308.
    [24] Huang Chenghan, Peng Jianbin. Evolutionary conservation and diversification of Rh family genes and proteins[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(43): 15512−15517.
    [25] Westhoff C M, Ferreri-Jacobia M, Mak D O D, et al. Identification of the erythrocyte Rh blood group glycoprotein as a mammalian ammonium transporter[J]. Journal of Biological Chemistry, 2002, 277(15): 12499−12502. doi: 10.1074/jbc.C200060200
    [26] Chng Y R, Ong J L Y, Ching B, et al. Molecular characterization of three Rhesus glycoproteins from the gills of the African lungfish, Protopterus annectens, and effects of aestivation on their mRNA expression levels and protein abundance[J]. PLoS One, 2017, 12(10): e0185814. doi: 10.1371/journal.pone.0185814
    [27] 张云龙, 张海龙, 王凌宇, 等. 氨氮对鱼类毒性的影响因子及气呼吸型鱼类耐氨策略[J]. 水生生物学报, 2017, 41(5): 1157−1168. doi: 10.7541/2017.144

    Zhang Yunlong, Zhang Hailong, Wang Lingyu, et al. Impact factors of ammonia toxicity and strategies for ammonia tolerance in air-breathing fish: a review[J]. Acta Hydrobiologica Sinica, 2017, 41(5): 1157−1168. doi: 10.7541/2017.144
    [28] Huang Chenghan, Ye Mao. The Rh protein family: gene evolution, membrane biology, and disease association[J]. Cellular and Molecular Life Sciences, 2010, 67(8): 1203−1218. doi: 10.1007/s00018-009-0217-x
    [29] Lehnert E M, Mouchka M E, Burriesci M S, et al. Extensive differences in gene expression between symbiotic and aposymbiotic cnidarians[J]. G3 Genes| Genomes| Genetics, 2014, 4(2): 277−295.
    [30] Ganot P, Moya A, Magnone V, et al. Adaptations to endosymbiosis in a cnidarian-dinoflagellate association: differential gene expression and specific gene duplications[J]. PLoS Genetics, 2011, 7(7): e1002187. doi: 10.1371/journal.pgen.1002187
    [31] Capasso L, Zoccola D, Ganot P, et al. SpiAMT1d: molecular characterization, localization, and potential role in coral calcification of an ammonium transporter in Stylophora pistillata[J]. Coral Reefs, 2022, 41(4): 1187−1198. doi: 10.1007/s00338-022-02256-5
    [32] Thies A B, Quijada-Rodriguez A R, Zhouyao H, et al. A Rhesus channel in the coral symbiosome membrane suggests a novel mechanism to regulate NH3 and CO2 delivery to algal symbionts[J]. Science Advances, 2022, 8(10): eabm0303. doi: 10.1126/sciadv.abm0303
    [33] Yang Qingsong, Ling Juan, Zhang Ying, et al. Microbial nitrogen removal in reef-building corals: a light-sensitive process[J]. Chemosphere, 2024, 359: 142394. doi: 10.1016/j.chemosphere.2024.142394
    [34] Wang Ke, Chen Huiwen, Cheng Lili, et al. Structure and transport mechanism of human riboflavin transporters[J]. Nature Communications, 2025, 16(1): 4078. doi: 10.1038/s41467-025-59255-7
    [35] Liu Zhi, Peng Jianbin, Mo Rong, et al. Rh type B glycoprotein is a new member of the Rh superfamily and a putative ammonia transporter in mammals[J]. Journal of Biological Chemistry, 2001, 276(2): 1424−1433. doi: 10.1074/jbc.M007528200
    [36] Cunning R, Bay R A, Gillette P, et al. Comparative analysis of the Pocillopora damicornis genome highlights role of immune system in coral evolution[J]. Scientific Reports, 2018, 8(1): 16134. doi: 10.1038/s41598-018-34459-8
    [37] 黄林韬, 黄晖, 江雷. 中国造礁石珊瑚分类厘定[J]. 生物多样性, 2020, 28(4): 515−523. doi: 10.17520/biods.2019384

    Huang Lintao, Huang Hui, Jiang Lei. A revised taxonomy for Chinese hermatypic corals[J]. Biodiversity Science, 2020, 28(4): 515−523. doi: 10.17520/biods.2019384
    [38] 高嵩钰. 海月水母(Aurelia coerulea)中主要毒素分子影响其变态发育的机制研究[D]. 上海: 中国人民解放军海军军医大学, 2022.

    Gao Songyu. Study on the mechanism of main toxin moleculesin Aurita coerulea affecting its metamorphosis[D]. Shanghai: Naval Medical University, 2022.
    [39] Hoadley K D, Lewis A M, Wham D C, et al. Host–symbiont combinations dictate the photo-physiological response of reef-building corals to thermal stress[J]. Scientific Reports, 2019, 9(1): 9985. doi: 10.1038/s41598-019-46412-4
    [40] Hoegh-Guldberg O. Climate change, coral bleaching and the future of the world's coral reefs[J]. Marine and Freshwater Research, 1999, 50(8): 839−866.
    [41] Yu Xiaopeng, Yu Kefu, Chen Biao, et al. Different responses of scleractinian coral Acropora pruinosa from Weizhou Island during extreme high temperature events[J]. Coral Reefs, 2021, 40(6): 1697−1711. doi: 10.1007/s00338-021-02182-y
    [42] Pfab F, Detmer A R, Moeller H V, et al. Heat stress and bleaching in corals: a bioenergetic model[J]. Coral Reefs, 2024, 43(6): 1627−1645. doi: 10.1007/s00338-024-02561-1
    [43] Lesser M P, Falcón L I, Rodríguez-Román A, et al. Nitrogen fixation by symbiotic cyanobacteria provides a source of nitrogen for the scleractinian coral Montastraea cavernosa[J]. Marine Ecology Progress Series, 2007, 346: 143−152. doi: 10.3354/meps07008
    [44] Gruswitz F, Chaudhary S, Ho J D, et al. Function of human Rh based on structure of RhCG at 2.1 Å[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(21): 9638−9643.
    [45] Weiner I D, Verlander J W. Ammonia transporters and their role in acid-base balance[J]. Physiological Reviews, 2017, 97(2): 465−494. doi: 10.1152/physrev.00011.2016
    [46] Benghezal M, Gotthardt D, Cornillon S, et al. Localization of the Rh50-like protein to the contractile vacuole in Dictyostelium[J]. Immunogenetics, 2001, 52(3): 284−288.
    [47] Baday S, Orabi E A, Wang Shihao, et al. Mechanism of NH4+ recruitment and NH3 transport in Rh proteins[J]. Structure, 2015, 23(8): 1550−1557. doi: 10.1016/j.str.2015.06.010
    [48] Li X D, Lupo D, Zheng L, et al. Structural and functional insights into the AmtB/Mep/Rh protein family[J]. Transfusion Clinique et Biologique, 2006, 13(1/2): 65−69.
    [49] Marini A M, Boeckstaens M, Benjelloun F, et al. Structural involvement in substrate recognition of an essential aspartate residue conserved in Mep/Amt and Rh-type ammonium transporters[J]. Current Genetics, 2006, 49(6): 364−374. doi: 10.1007/s00294-006-0062-5
    [50] Benjelloun F, Bakouh N, Fritsch J, et al. Expression of the human erythroid Rh glycoprotein (RhAG) enhances both NH3 and NH4+ transport in HeLa cells[J]. Pflügers Archiv, 2005, 450(3): 155−167.
    [51] Bakouh N, Benjelloun F, Hulin P, et al. NH3 is involved in the NH4+ transport induced by the functional expression of the human Rh C glycoprotein[J]. Journal of Biological Chemistry, 2004, 279(16): 15975−15983. doi: 10.1074/jbc.M308528200
    [52] Dudler N, Miller D J. Characterization of two glutamate dehydrogenases from the symbiotic microalga Symbiodinium microadriaticum isolated from the coral Acropora formosa[J]. Marine Biology, 1988, 97(3): 427−430. doi: 10.1007/BF00397773
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  8
  • HTML全文浏览量:  1
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-08
  • 修回日期:  2025-07-24
  • 网络出版日期:  2025-08-05

目录

    /

    返回文章
    返回