留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两种造礁珊瑚对高悬浮物胁迫的生理响应研究

王宇杰 刘依娜 周曦杰 王建佳 张涵 郑新庆

王宇杰,刘依娜,周曦杰,等. 两种造礁珊瑚对高悬浮物胁迫的生理响应研究[J]. 海洋学报,2025,47(x):1–10
引用本文: 王宇杰,刘依娜,周曦杰,等. 两种造礁珊瑚对高悬浮物胁迫的生理响应研究[J]. 海洋学报,2025,47(x):1–10
Wang Yujie,Liu Yina,Zhou Xijie, et al. Physiological responses of two scleractinian coral species to elevated exposure of suspended particle matter[J]. Haiyang Xuebao,2025, 47(x):1–10
Citation: Wang Yujie,Liu Yina,Zhou Xijie, et al. Physiological responses of two scleractinian coral species to elevated exposure of suspended particle matter[J]. Haiyang Xuebao,2025, 47(x):1–10

两种造礁珊瑚对高悬浮物胁迫的生理响应研究

基金项目: 国家重点研发计划(2024YFF1306805),自然资源部海洋三所基本科研业务费专项资金项目(2019017),国家自然科学基金区域联合基金(U24A20607)以及面上基金(42376110)和福建省自然科学基金杰青项目(2023J06043)。
详细信息
    作者简介:

    王宇杰(1983—),男,福建省厦门市人,从事海洋微藻、珊瑚生态学研究。 Email:wangyj@xmu.edu.cn

    通讯作者:

    周曦杰,从事珊瑚礁生物学研究。Email: zhouxijie@tio.org.cn

Physiological responses of two scleractinian coral species to elevated exposure of suspended particle matter

  • 摘要: 近岸的珊瑚礁普遍受到高悬浮物的长期胁迫,但对造礁珊瑚的悬浮物耐受阈值目前了解不多,阻碍了我们对近岸造礁珊瑚群落的保护和管理。本研究以造礁珊瑚群落分布北缘——东山海域造礁珊瑚的优势种——标准盘星珊瑚(Dipsastraea speciosa)和锯齿刺星珊瑚(Cyphastrea sp.)为研究对象,采用自主设计开发的悬浮物浓度模拟控制系统,设置了4个悬浮物浓度(0 mg L−1,35 mg L−1,50 mg L−1,100 mg L−1),以珊瑚表观形态特征以及光合生理参数为指标,研究了它们对持续28天的高悬浮物暴露的生理响应。结果表明,在实验起始阶段,悬浮物处理组的刺星珊瑚和标准盘星珊瑚均呈现水螅体收缩现象,但随着时间的增加,所有处理组的两种珊瑚水螅体逐渐恢复至正常状态,且没有观察到珊瑚白化或死亡。此外,两种造礁珊瑚均表现出较强的光合生理可塑性。随着悬浮物浓度的增加,两种珊瑚的实际光量子产量(ΦPSII)也增加,并在100 mg L−1达到最大值,表明这两种珊瑚在高悬浮物浓度下可以通过增强光合作用效率来抵消光照的不足。与此同时,两种珊瑚的最大光量子产量(Fv/Fm)、叶绿素含量和虫黄藻密度在高悬浮物暴露下均维持相对稳定,表明两种珊瑚的光合性能在悬浮物胁迫下依旧保持健康状态,表明东山这两种造礁珊瑚对悬浮物的耐受阈值可能超过100 mg L−1,有着较强的高悬浮物耐受性。本研究是国内首个实现室内长期高悬浮物控制的实验,研究结果可以为我国造礁珊瑚群落的保护和管理提供基础数据支撑。
  • 图  1  基于实验水体浊度调控的悬浮物控制模拟系统

    Fig.  1  SPM-controlled simulated system based on the turbidity of experimental tanks

    图  2  东山湾水域水体浊度的变化(2020.012023.01

    Fig.  2  Long-term variation of the turbidity from Jan 2020 to Jan 2023 in the Dongshan Bay

    图  3  实验初期悬浮物浓度的实时记录数据

    Fig.  3  The real-time data at the beginning of the experiment for the concentration of suspended particle matter in the experimental tanks

    图  4  悬浮物暴露对两种珊瑚表观形态特征的影响

    Fig.  4  Effect of SPM exposure on the morphological traits of two species of corals

    图  5  悬浮物暴露对两种珊瑚光量子参数的影响

    Fig.  5  Effect of SPM exposure on the Fv/Fm and ΦPSII on two species of corals

    图  6  悬浮物暴露对虫黄藻密度和叶绿素含量的影响

    Fig.  6  Effect of SPM exposure on the zooxanthellae density and chlorophyll content

    表  1  实验系统中平均悬浮物浓度

    Tab.  1  Mean SPM concentration in the experimetnal tanks

    系统设置
    浓度
    0 mg L−1 35 mg L−1 50 mg L−1 100 mg L−1
    实际平均
    浓度
    4.6 ±
    0.5 mg L−1
    34.3 ±
    0.7 mg L1
    53.4 ±
    2.5 mg L−1
    103.7 ±
    4.5 mg L−1
    下载: 导出CSV
  • [1] Jompa J, McCook L J. The effects of nutrients and herbivory on competition between a hard coral (Porites cylindrica) and a brown alga (Lobophora variegata)[J]. Limnology and Oceanography, 2002, 47(2): 527−534. doi: 10.4319/lo.2002.47.2.0527
    [2] Rinkevich B, Loya Y. Does light enhance calcification in hermatypic corals?[J]. Marine Biology, 1984, 80(1): 1−6. doi: 10.1007/BF00393120
    [3] Rinkevich B, Loya Y. Coral illumination through an optic glass-fiber: incorporation of 14C photosynthates[J]. Marine Biology, 1984, 80(1): 7−15. doi: 10.1007/BF00393121
    [4] Spalding M D, Grenfell A M. New estimates of global and regional coral reef areas[J]. Coral Reefs, 1997, 16(4): 225−230. doi: 10.1007/s003380050078
    [5] Browne N K, Smithers S G, Perry C T. Coral reefs of the turbid inner-shelf of the Great Barrier Reef, Australia: an environmental and geomorphic perspective on their occurrence, composition and growth[J]. Earth-Science Reviews, 2012, 115(1/2): 1−20.
    [6] Lawrence D, Dagg M J, Liu Hongbin, et al. Wind events and benthic-pelagic coupling in a shallow subtropical bay in Florida[J]. Marine Ecology Progress Series, 2004, 266: 1−13. doi: 10.3354/meps266001
    [7] Lou Jing, Ridd P V. Reply to comments by J. P. Xu regarding ''wave-current bottom shear stresses and sediment resuspension in cleveland bay, Australia” by Lou and Ridd[J]. Coastal Engineering, 1998, 33(1): 65−67. doi: 10.1016/S0378-3839(97)00036-7
    [8] Larcombe P, Costen A, Woolfe K J. The hydrodynamic and sedimentary setting of nearshore coral reefs, central Great Barrier Reef shelf, Australia: Paluma Shoals, a case study[J]. Sedimentology, 2001, 48(4): 811−835. doi: 10.1046/j.1365-3091.2001.00396.x
    [9] Wolanski E, Gibbs R. Resuspension and clearing of dredge spoils after dredging, Cleveland Bay, Australia[J]. Water Environment Research, 1992, 64(7): 910−914. doi: 10.2175/WER.64.7.9
    [10] Orpin A R, Ridd P V, Thomas S, et al. Natural turbidity variability and weather forecasts in risk management of anthropogenic sediment discharge near sensitive environments[J]. Marine Pollution Bulletin, 2004, 49(7/8): 602−612.
    [11] Thomas S, Ridd P V, Day G. Turbidity regimes over fringing coral reefs near a mining site at Lihir Island, Papua New Guinea[J]. Marine Pollution Bulletin, 2003, 46(8): 1006−1014. doi: 10.1016/S0025-326X(03)00122-X
    [12] Jones R, Bessell-Browne P, Fisher R, et al. Assessing the impacts of sediments from dredging on corals[J]. Marine Pollution Bulletin, 2016, 102(1): 9−29. doi: 10.1016/j.marpolbul.2015.10.049
    [13] Cunning R, Silverstein R N, Barnes B B, et al. Extensive coral mortality and critical habitat loss following dredging and their association with remotely-sensed sediment plumes[J]. Marine Pollution Bulletin, 2019, 145: 185−199. doi: 10.1016/j.marpolbul.2019.05.027
    [14] Hall T E, Freedman A S, De Roos A M, et al. Stony coral populations are more sensitive to changes in vital rates in disturbed environments[J]. Ecological Applications, 2021, 31(2): e02234. doi: 10.1002/eap.2234
    [15] Tebbett S B, Bellwood D R. Algal turf sediments on coral reefs: what's known and what's next[J]. Marine Pollution Bulletin, 2019, 149: 110542. doi: 10.1016/j.marpolbul.2019.110542
    [16] Jordán-Garza A G, González-Gándara C, Salas-Pérez J J, et al. Coral assemblages are structured along a turbidity gradient on the Southwestern Gulf of Mexico, Veracruz[J]. Continental Shelf Research, 2017, 138: 32−40. doi: 10.1016/j.csr.2017.03.002
    [17] Richardson L E, Graham N A J, Hoey A S. Coral species composition drives key ecosystem function on coral reefs[J]. Proceedings of the Royal Society B: Biological Sciences, 2020, 287(1921): 20192214. doi: 10.1098/rspb.2019.2214
    [18] Hsieh H, Wei Nuwei, Lu Yilin, et al. Unexpectedly high coral coverage in Chinwan Inner Bay, Pescadores: a proposed site for a Marine Protection Area[J]. Coral Reefs, 2001, 20(3): 316−317. doi: 10.1007/s003380100169
    [19] Anthony K R N. Enhanced energy status of corals on coastal, high-turbidity reefs[J]. Marine Ecology Progress Series, 2006, 319: 111−116. doi: 10.3354/meps319111
    [20] Morgan K M, Perry C T, Smithers S G, et al. Evidence of extensive reef development and high coral cover in nearshore environments: implications for understanding coral adaptation in turbid settings[J]. Scientific Reports, 2016, 6: 29616. doi: 10.1038/srep29616
    [21] Stafford-Smith M G. Sediment-rejection efficiency of 22 species of Australian scleractinian corals[J]. Marine Biology, 1993, 115(2): 229−243. doi: 10.1007/BF00346340
    [22] Erftemeijer P L A, Riegl B, Hoeksema B W, et al. Environmental impacts of dredging and other sediment disturbances on corals: a review[J]. Marine Pollution Bulletin, 2012, 64(9): 1737−1765. doi: 10.1016/j.marpolbul.2012.05.008
    [23] Zheng Xinqing, Wang Qifang, Dong Xu, et al. A new perspective of nutrient management of subtropical coastal stress-tolerant scleractinian coral communities[J]. Continental Shelf Research, 2021, 220: 104405. doi: 10.1016/j.csr.2021.104405
    [24] 梁姗姗, 王建佳, 黄锦树, 等. 近岸多源环境因素影响下珊瑚群落的生态脆弱性评价研究[J]. 生态环境学报, 2021, 30(12): 2360−2369.

    Liang Shanshan, Wang Jianjia, Huang Jinshu, et al. Ecological vulnerability assessment of coral community under the impact of multiple environmental factors[J]. Ecology and Environmental Sciences, 2021, 30(12): 2360−2369.
    [25] Jeffrey S W, Humphrey G F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton[J]. Biochemie und Physiologie der Pflanzen, 1975, 167(2): 191−194. doi: 10.1016/S0015-3796(17)30778-3
    [26] Beliaeff B, Burgeot T. Integrated biomarker response: a useful tool for ecological risk assessment[J]. Environmental Toxicology and Chemistry, 2002, 21(6): 1316−1322. doi: 10.1002/etc.5620210629
    [27] Roth M S, Latz M I, Goericke R, et al. Green fluorescent protein regulation in the coral Acropora yongei during photoacclimation[J]. Journal of Experimental Biology, 2010, 213(21): 3644−3655. doi: 10.1242/jeb.040881
    [28] Hennige S J, Smith D J, Perkins R, et al. Photoacclimation, growth and distribution of massive coral species in clear and turbid waters[J]. Marine Ecology Progress Series, 2008, 369: 77−88. doi: 10.3354/meps07612
    [29] Falter J L, Lowe R J, Zhang Zhenlin, et al. Physical and biological controls on the carbonate chemistry of coral reef waters: effects of metabolism, wave forcing, sea level, and geomorphology[J]. PLoS One, 2017, 8(1): e53303.
    [30] Krause G H, Weis E. Chlorophyll fluorescence and photosynthesis: the basics[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1991, 42(1): 313−349. doi: 10.1146/annurev.pp.42.060191.001525
    [31] 周洁, 施祺, 余克服. 叶绿素荧光技术在珊瑚礁研究中的应用[J]. 热带地理, 2011, 31(2): 223−229. doi: 10.3969/j.issn.1001-5221.2011.02.018

    Zhou Jie, Shi Qi, Yu Kefu. Application of chlorophyll fluorescence technique in the study of coral reefs[J]. Tropical Geography, 2011, 31(2): 223−229. doi: 10.3969/j.issn.1001-5221.2011.02.018
    [32] 邢帅, 谭烨辉, 周林滨, 等. 水体浑浊度对不同造礁石珊瑚种类共生虫黄藻的影响[J]. 科学通报, 2012, 57(5): 348−354. doi: 10.1360/972011-1184

    Xing Shuai, Tan Yehui, Zhou Linbin, et al. Effects of water turbidity on the symbiotic zooxanthella of hermatypic corals[J]. Chinese Science Bulletin, 2012, 57(5): 348−354. doi: 10.1360/972011-1184
    [33] Wang Qifang, Zhou Xijie, Wang Jianjia, et al. Heterotrophy confers corals with resistance but limits their range expansion: a case of marginal coral communities[J]. Ecosystem Health and Sustainability, 2024, 10: 0246. doi: 10.34133/ehs.0246
    [34] 罗勇, 俞晓磊, 黄晖. 悬浮物对造礁石珊瑚营养方式的影响及其适应性研究进展[J]. 生态学报, 2021, 41(21): 8331−8340.

    Luo Yong, Yu Xiaolei, Huang Hui. Effect of suspended sediment on the nutritional mode of scleractinian corals and their adaptability: state of knowledge and research[J]. Acta Ecologica Sinica, 2021, 41(21): 8331−8340.
    [35] Warner M, Chilcoat G, McFarland F, et al. Seasonal fluctuations in the photosynthetic capacity of photosystem II in symbiotic dinoflagellates in the Caribbean reef-building coral Montastraea[J]. Marine Biology, 2002, 141(1): 31−38. doi: 10.1007/s00227-002-0807-8
    [36] Piniak G A. Effects of two sediment types on the fluorescence yield of two Hawaiian scleractinian corals[J]. Marine Environmental Research, 2007, 64(4): 456−468. doi: 10.1016/j.marenvres.2007.04.001
    [37] Flores F, Hoogenboom M O, Smith L D, et al. Chronic exposure of corals to fine sediments: Lethal and sub-lethal impacts[J]. PLoS One, 2017, 7(5): e37795.
    [38] Browne N K, Precht E, Last K S, et al. Photo-physiological costs associated with acute sediment stress events in three near-shore turbid water corals[J]. Marine Ecology Progress Series, 2014, 502: 129−143. doi: 10.3354/meps10714
    [39] Browne N K, Tay J, Todd P A. Recreating pulsed turbidity events to determine coral–sediment thresholds for active management[J]. Journal of Experimental Marine Biology and Ecology, 2015, 466: 98−109. doi: 10.1016/j.jembe.2015.02.010
    [40] Done T J. Patterns in the distribution of coral communities across the central Great Barrier Reef[J]. Coral Reefs, 1982, 1(2): 95−107. doi: 10.1007/BF00301691
    [41] McCloskey L R, Muscatine L. Production and respiration in the Red Sea coral Stylophora pistillata as a function of depth[J]. Proceedings of the Royal Society of London. Series B, Biological Sciences, 1984, 222(1227): 215−230.
    [42] Shick J M, Lesser M P, Dunlap W C, et al. Depth-dependent responses to solar ultraviolet radiation and oxidative stress in the zooxanthellate coral Acropora microphthalma[J]. Marine Biology, 1995, 122(1): 41−51. doi: 10.1007/BF00349276
    [43] Brown B E, Dunne R P, Ambarsari I, et al. Seasonal fluctuations in environmental factors and variations in symbiotic algae and chlorophyll pigments in four Indo-Pacific coral species[J]. Marine Ecology Progress Series, 1999, 191: 53−69. doi: 10.3354/meps191053
    [44] Dustan P. Depth-dependent photoadaption by zooxanthellae of the reef coral Montastrea annularis[J]. Marine Biology, 1982, 68(3): 253−264. doi: 10.1007/BF00409592
    [45] Cohen I, Dubinsky Z. Long term photoacclimation responses of the coral Stylophora pistillata to reciprocal deep to shallow transplantation: photosynthesis and calcification[J]. Frontiers in Marine Science, 2015, 2: 45.
    [46] Winters G, Beer S, Zvi B B, et al. Spatial and temporal photoacclimation of Stylophora pistillata: zooxanthella size, pigmentation, location and clade[J]. Marine Ecology Progress Series, 2009, 384: 107−119. doi: 10.3354/meps08036
    [47] Drew E A. The biology and physiology of alga-invertebrate symbioses. I. Carbon fixation in Cassiopea sp. at aldabra atoll[J]. Journal of Experimental Marine Biology and Ecology, 1972, 9(1): 65−69. doi: 10.1016/0022-0981(72)90007-X
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  5
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-01
  • 修回日期:  2025-04-25
  • 网络出版日期:  2025-05-30

目录

    /

    返回文章
    返回