留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两种环境敏感性不同的虫黄藻(Cladocopium goreauiDurusdinium trenchii)的脂质代谢对热胁迫的响应模式

张丽 李志聪 杨雅婷 梁祝清 冯宜合 卢铭垚 胡思雨 余克服 梁甲元

张丽,李志聪,杨雅婷,等. 两种环境敏感性不同的虫黄藻(Cladocopium goreaui和Durusdinium trenchii)的脂质代谢对热胁迫的响应模式[J]. 海洋学报,2025,47(x):1–14
引用本文: 张丽,李志聪,杨雅婷,等. 两种环境敏感性不同的虫黄藻(Cladocopium goreauiDurusdinium trenchii)的脂质代谢对热胁迫的响应模式[J]. 海洋学报,2025,47(x):1–14
Zhang Li,Li Zhicong,Yang Yating, et al. Lipid metabolic response patterns to heat stress in two Symbiodiniaceae species with different environmental sensitivities (Cladocopium goreaui and Durusdinium trenchii)[J]. Haiyang Xuebao,2025, 47(x):1–14
Citation: Zhang Li,Li Zhicong,Yang Yating, et al. Lipid metabolic response patterns to heat stress in two Symbiodiniaceae species with different environmental sensitivities (Cladocopium goreaui and Durusdinium trenchii)[J]. Haiyang Xuebao,2025, 47(x):1–14

两种环境敏感性不同的虫黄藻(Cladocopium goreauiDurusdinium trenchii)的脂质代谢对热胁迫的响应模式

基金项目: 科技基础资源调查专项(2023FY100804)。
详细信息
    作者简介:

    张丽(1998—),女,福建龙岩人,硕士研究生,研究方向为海洋微生物资源开发与应用。E-mail:Lingjunluo@outlook.com

    通讯作者:

    梁甲元(1986—),男,博士,副教授,硕士生导师,研究方向为珊瑚礁微生物生理、海洋微生物资源开发与应用。E-mail: jyliang@gxu.edu.cn

  • 中图分类号: Q178.53

Lipid metabolic response patterns to heat stress in two Symbiodiniaceae species with different environmental sensitivities (Cladocopium goreaui and Durusdinium trenchii)

  • 摘要: 虫黄藻是珊瑚共生体系中不可或缺的伙伴,不同种类的虫黄藻对环境胁迫的敏感性不同,从而影响珊瑚宿主的环境适应能力。本研究从脂质代谢角度,探讨了广泛分布的两种珊瑚共生虫黄藻—环境敏感型Cladocopium goreauiC. goreaui)和环境耐受型Durusdinium trenchiiD. trenchii)在热胁迫下的应激模式。研究发现,热胁迫显著影响两者的生长密度、光合色素含量、称为光系统II(PSII)的光化学效率(Fv/Fm)及抗氧化活性,且差异均具有统计学意义(P < 0.05)。脂质组学显示,C. goreauiD. trenchii在应对热胁迫时,磷脂酰胆碱、甘油三酯、磷脂酰乙醇胺和溶血磷脂酰胆碱等脂质差异代谢物显著富集于甘油磷脂代谢、甘油酯代谢及多不饱和脂肪酸相关代谢通路。值得注意的是,两者在鞘脂代谢方面存在显著差异:D. trenchii通过下调神经酰胺水平减少细胞氧化应激损伤,调控自噬过程,并适应膜流动性的变化;而C. goreaui主要通过上调富含多不饱和脂肪酸的脂质分子,以维持膜稳定性和调控信号传导。深入解析不同环境敏感性虫黄藻在热胁迫下的脂质代谢应激机制,有助于从共生伙伴的角度,为提升珊瑚对环境变化的适应能力提供新的见解。
  • 图  1  热胁迫下两种虫黄藻的生理指标变化。(A)CC组、CT组、DC组和DT组的生长密度。(B)CC组、CT组、DC组和DT组的生长速率(μ)。(C)CC组、CT组、DC组和DT组的叶绿素a含量变化。(D)CC组、CT组、DC组和DT组的类胡萝卜素含量变化。(E)CC组、CT组、DC组和DT组的叶绿素c含量变化。(F)CC组、CT组、DC组和DT组的Fv/Fm值变化。误差棒表示SEM(3个生物学重复)。实验组和对照组之间的显著性用星号表示(*:P < 0.05;**:P < 0.01;***:P < 0.001)

    Fig.  1  Physiological parameter changes of two Symbiodiniaceae species under heat stress. (A) Growth density of CC, CT, DC, and DT groups. (B) Growth rate (μ) of CC, CT, DC, and DT groups. (C) Changes in Chlorophyll a content in CC, CT, DC, and DT groups. (D) Changes in carotenoid content in CC, CT, DC, and DT groups. (E) Changes in Chlorophyll c content in CC, CT, DC, and DT groups. (F) Changes in Fv/Fm values in CC, CT, DC, and DT groups. Error bars represent SEM (n = 3 biological replicates). Statistical significance between experimental and control groups is indicated by asterisks (*: P < 0.05; **: P < 0.01; ***: P < 0.001)

    图  2  热胁迫下两种虫黄藻抗氧化物活性(含量)变化。(A)CC组、CT组、DC组和DT组的可溶性蛋白浓度的变化。(B)CC组、CT组、DC组和DT组的SOD活力的变化。(C)CC组、CT组、DC组和DT组的MDA含量的变化。误差棒表示SEM(3个生物学重复)。实验组和对照组之间的显著性用星号表示(*:P < 0.05;**:P < 0.01;***:P < 0.001)

    Fig.  2  Changes in antioxidant activity (content) of two Symbiodiniaceae species under heat stress. (A) Changes in soluble protein concentration in CC, CT, DC, and DT groups. (B) Changes in SOD activity in CC, CT, DC, and DT groups. (C) Changes in MDA content in CC, CT, DC, and DT groups. Error bars represent SEM (n = 3 biological replicates). Statistical significance between experimental and control groups is indicated by asterisks (*: P < 0.05; **: P < 0.01; ***: P < 0.001)

    图  3  热胁迫下两种虫黄藻脂质变化注释图。(A)虫黄藻全脂质分类统计图;(B)虫黄藻脂质链不饱和度分类统计图;(C)CC组、CT组、DC组和DT组的脂质分类统计图。误差棒表示SEM(6个生物学重复)

    Fig.  3  Annotated diagram of lipid changes in two types of Symbiodiniaceae species under heat stress. (A) Total lipid classification chart for Symbiodiniaceae. (B) Lipid chain unsaturation classification chart for Symbiodiniaceae. (C) Lipid classification chart for the CC, CT, DC, and DT groups. Error bars represent SEM (n = 6 biological replicates)

    图  4  热胁迫下两种虫黄藻的PCA得分图和OPLS-DA得分图。(A)、(B)正、负离子模式CC组、CT组、DC组、DT组的PCA得分图;(C)、(D)正、负离子模式下CC组、CT组的OPLS-DA得分图;(E)、(F)正、负离子模式下DC组、DT组的OPLS-DA得分图。

    Fig.  4  PCA score plot and OPLS-DA score plot of two types of Symbiodiniaceae species under heat stress. (A), (B) PCA score plots for the CC, CT, DC, and DT groups in positive and negative ion modes. (C), (D) OPLS-DA score plots for the CC and CT groups in positive and negative ion modes. (E), (F) OPLS-DA score plots for the DC and DT groups in positive and negative ion modes.

    图  5  热胁迫下两种虫黄藻的显著差异代谢物火山图。(A)CC vs CT显著差异代谢物火山图;(B)DC vs DT显著差异代谢物火山图;(C)CC vs DC显著差异代谢物火山图;(D)CT vs DT显著差异代谢物火山图。以P值取前10的代谢物进行标记,P值越小越显著

    Fig.  5  Volcano plot of significant different metabolites in two Symbiodiniaceae species under heat stress. (A) Volcano plot of significant different metabolites in CC vs. CT. (B) Volcano plot of significant different metabolites in DC vs. DT. (C) Volcano plot of significant different metabolites in CC vs. DC. (D) Volcano plot of significant different metabolites in CT vs. DT, with the top 10 metabolites marked by smallest P-values, indicating greater significance

    图  6  热胁迫下两种虫黄藻的单因素方差分析柱状图。图中纵坐标轴表示代谢物名称,横坐标表示表示代谢物在不同分组中平均相对丰度,不同颜色的柱子表示不同分组;误差棒表示SEM(6个生物学重复)。星号为显著性为P值(*:0.01 < P l0.05,**:0.001 < P 0.01,***:P 0.001)

    Fig.  6  One-way ANOVA histogram of two Symbiodiniaceae species under heat stress The y-axis of the chart represents metabolite names, while the x-axis represents the average relative abundance of metabolites in different groups. Bars of different colors correspond to different groups. Error bars represent SEM (n = 6 biological replicates). Asterisks indicate significance levels of P-values (*: 0.01 < P 0.05, **: 0.001 < P 0.01, ***: P 0.001)

    图  7  热胁迫下两种虫黄藻差异代谢物的KEGG富集气泡图。(A)CC vs CT的差异代谢物的KEGG富集分析通路图;(B)DC vs DT的差异代谢物的KEGG富集分析通路图;(C)CC vs DC的差异代谢物的KEGG富集分析通路图;(D)CT vs DT的差异代谢物的KEGG富集分析通路图。横坐标为富集显著性P值,P值越小,在统计学上就越有显著意义,一般P < 0.05认为该功能为显著富集项;纵坐标为KEGG通路。图中气泡的颜色代表该通路富集显著性,气泡的大小代表该通路中富集到代谢集中代谢物的数量

    Fig.  7  KEGG enrichment bubble plot of different metabolites in two Symbiodiniaceae species under heat stress. (A) KEGG pathway enrichment analysis of different metabolites of CC vs. CT. (B) KEGG pathway enrichment analysis of different metabolites of DC vs. DT. (C) KEGG pathway enrichment analysis of different metabolites of CC vs DC. (D) KEGG pathway enrichment analysis of different metabolites of CT vs DT. The x-axis represents the enrichment significance P-value, where smaller P-values indicate higher statistical significance. Generally, pathways with P < 0.05 are considered significantly enriched. The y-axis represents KEGG pathways. In the chart, the color of the bubbles indicates the enrichment significance of the pathway, while the size of the bubbles represents the number of metabolites enriched in the corresponding pathway

    表  1  OPLS-DA模型

    Tab.  1  OPLS-DA modles

    模型R2X(cum)R2Y(cum)Q2(cum)
    CC vs CT0.6410.9920.987
    CC vs CT *0.6290.9930.988
    DC vs DT0.5600.9980.990
    DC vs DT *0.5930.9970.991
      注:*代表负离子模式。
    下载: 导出CSV
  • [1] Trench R K. Microalgalinvertebrate symbioses: a review[J]. Endocytobiosis and Cell Research, 1993, 9(2/3): 135−175.
    [2] Von Holt C, Von Holt M. Transfer of photosynthetic products from zooxanthellae to coelenterate hosts[J]. Comparative Biochemistry and Physiology, 1968, 24(1): 73−81. doi: 10.1016/0010-406X(68)90959-6
    [3] Cernichiari E, Muscatine L, Smith D C. Maltose excretion by the symbiotic algae of Hydra viridis[J]. Proceedings of the Royal Society of London Series B, Biological Sciences, 1969, 173(1033): 557−576.
    [4] Gordon B R, Leggat W. Symbiodinium-Invertebrate symbioses and the role of metabolomics[J]. Marine Drugs, 2010, 8(10): 2546−2568. doi: 10.3390/md8102546
    [5] Yellowlees D, Rees T A V, Leggat W. Metabolic interactions between algal symbionts and invertebrate hosts[J]. Plant Cell Environ, 2008, 31(5): 679−694. doi: 10.1111/j.1365-3040.2008.01802.x
    [6] Pochon X, Gates R D. A new Symbiodinium clade (dinophyceae) from soritid foraminifera in Hawai’i[J]. Molecular Phylogenetics and Evolution, 2010, 56(1): 492−497. doi: 10.1016/j.ympev.2010.03.040
    [7] Pochon X, Lajeunesse T C. Miliolidium n. gen, a new symbiodiniacean genus whose members associate with soritid foraminifera or are free-living[J]. Eukaryotic Microbiology, 2021, 68(4): e12856. doi: 10.1111/jeu.12856
    [8] Nitschke M R, Craveiro S C, Brandão C, et al. Description of Freudenthalidium gen. nov. and Halluxium gen. nov. to formally recognize clades Fr3 and H as genera in the family symbiodiniaceae (dinophyceae)[J]. Journal of Phycology, 2020, 56(4): 923−940. doi: 10.1111/jpy.12999
    [9] Lajeunesse T C, Parkinson J E, Gabrielson P W, et al. Systematic revision of symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts[J]. Current Biology, 2018, 28(16): 2570−2580. e6.
    [10] Abrego D, Ulstrup K E, Willis B L, et al. Species–specific interactions between algal endosymbionts and coral hosts define their bleaching response to heat and light stress[J]. Proceedings of the Royal Society B: Biological Sciences, 2008, 275(1648): 2273−2282. doi: 10.1098/rspb.2008.0180
    [11] Berkelmans R, Van Oppen M J H. The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change[J]. Proceedings of the Royal Society B: Biological Sciences, 2006, 273(1599): 2305−2312. doi: 10.1098/rspb.2006.3567
    [12] Silverstein R N, Cunning R, Baker A C. Tenacious D: Symbiodinium in clade D remain in reef corals at both high and low temperature extremes despite impairment[J]. Journal of Experimental Biology, 2017, 220(7): 1192−1196.
    [13] Baker A C, Starger C J, Mcclanahan T R, et al. Coral reefs: corals' adaptive response to climate change[J]. Nature, 2004, 430(7001): 741. doi: 10.1038/430741a
    [14] Rowan R. Thermal adaptation in reef coral symbionts[J]. Nature, 2004, 430(7001): 742. doi: 10.1038/430742a
    [15] Krueger T, Hawkins T D, Becker S, et al. Differential coral bleaching-contrasting the activity and response of enzymatic antioxidants in symbiotic partners under thermal stress[J]. Comparative Biochemistry and Physiology Part: A Molecular & Integrative Physiology, 2015, 190: 15−25.
    [16] Baker D M, Freeman C J, Wong J C Y, et al. Climate change promotes parasitism in a coral symbiosis[J]. The ISME Journal, 2018, 12(3): 921−930. doi: 10.1038/s41396-018-0046-8
    [17] Little A F, Van Oppen M J H, Willis B L. Flexibility in algal endosymbioses shapes growth in reef corals[J]. Science, 2004, 304(5676): 1492−1494. doi: 10.1126/science.1095733
    [18] Baker A C. Reef corals bleach to survive change[J]. Nature, 2001, 411(6839): 765−766. doi: 10.1038/35081151
    [19] Glynn P W, MatéJ, Baker A C, et al. Coral bleaching and mortality in panamá and ecuador during the 1997-1998 El niño-southern oscillation event: spatial/temporal patterns and comparisons with the 1982-1983 event[J]. Bulletin of Marine Science, 2001, 69(1): 79−109.
    [20] Tchernov D, Gorbunov M Y, De Vargas C, et al. Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(37): 13531−13535.
    [21] Huang Yayi, Carballo-Bolaños R, Kuo Chaoyang, et al. Leptoria phrygia in southern taiwan shuffles and switches symbionts to resist thermal-induced bleaching[J]. Scientific Reports, 2020, 10(1): 7808. doi: 10.1038/s41598-020-64749-z
    [22] Fay S A, Weber M X. The occurrence of mixed infections of symbiodinium (dinoflagellata) within individual hosts[J]. Journal of Phycology, 2012, 48(6): 1306−1316. doi: 10.1111/j.1529-8817.2012.01220.x
    [23] Abrego D, Van Oppen M J H, Willis B L. Onset of algal endosymbiont specificity varies among closely related species of Acropora corals during early ontogeny[J]. Molecular Ecology, 2009, 18(16): 3532−3543. doi: 10.1111/j.1365-294X.2009.04276.x
    [24] Klepac C N, Barshis D J. Reduced thermal tolerance of massive coral species in a highly variable environment[J]. Proceedings of the Royal Society B: Biological Sciences, 2020, 287(1933): 20201379. doi: 10.1098/rspb.2020.1379
    [25] Stat M, Gates R D. Clade d symbiodinium in scleractinian corals: a “nugget” of hope, a selfish opportunist, an ominous sign, or all of the above?[J]. Journal of Marine Sciences, 2011, 2011(2011): 1−9.
    [26] Warner M E, Fitt W K, Schmidt G W. Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(14): 8007−8012.
    [27] Takahashi S, Nakamura T, Sakamizu M, et al. Repair machinery of symbiotic photosynthesis as the primary target of heat stress for reef-building corals[J]. Plant and Cell Physiology, 2004, 45(2): 251−255. doi: 10.1093/pcp/pch028
    [28] Jones R J, Hoegh-Guldberg O, Larkum A W D, et al. Temperature-induced bleaching of corals begins with impairment of the CO2 fixation mechanism in zooxanthellae[J]. Plant, Cell & Environment, 1998, 21(12): 1219−1230
    [29] Takahashi S, Whitney S, Itoh S, et al. Heat stress causes inhibition of the de novo synthesis of antenna proteins and photobleaching in cultured symbiodinium[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(11): 4203−4208.
    [30] Weis V M. Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis[J]. Journal of Experimental Biology, 2008, 211(19): 3059−3066. doi: 10.1242/jeb.009597
    [31] Gates R D, Baghdasarian G, Muscatine L. Temperature stress causes host cell detachment in symbiotic cnidarians: implications for coral bleaching[J]. The Biological Bulletin, 1992, 182(3): 324−332. doi: 10.2307/1542252
    [32] Cunning R, Baker A C. Not just who, but how many: the importance of partner abundance in reef coral symbioses[J]. Frontiers in Microbiology, 2014, 5: 400.
    [33] Fitt W K, Brown B E, Warner M E, et al. Coral bleaching: interpretation of thermal tolerance limits and thermal thresholds in tropical corals[J]. Coral Reefs, 2001, 20: 51−65. doi: 10.1007/s003380100146
    [34] Wu Di, Tang Haiping, Qiu Xingyu, et al. Native MS-guided lipidomics to define endogenous lipid microenvironments of eukaryotic receptors and transporters[J]. Nature Protocols, 2025, 20(1): 1−25. doi: 10.1038/s41596-024-01037-4
    [35] Luo Y J, Wang L H, Chen W N U, et al. Ratiometric imaging of gastrodermal lipid bodies in coral–dinoflagellate endosymbiosis[J]. Coral Reefs, 2009, 28(1): 289−301. doi: 10.1007/s00338-008-0462-8
    [36] Yin Huiyong, Xu Libin, Porter N A. Free radical lipid peroxidation: mechanisms and analysis[J]. Chemical Reviews, 2011, 111(10): 5944−5972. doi: 10.1021/cr200084z
    [37] Han Xianlin. Lipidomics for studying metabolism[J]. Nature Reviews Endocrinology, 2016, 12(11): 668−679. doi: 10.1038/nrendo.2016.98
    [38] Endle H, Horta G, Stutz B, et al. AgRP neurons control feeding behaviour at cortical synapses via peripherally derived lysophospholipids[J]. Nature Metabolism, 2022, 4(6): 683−692. doi: 10.1038/s42255-022-00589-7
    [39] Sikorskaya T V, Ermolenko E V, Efimova K V. Lipids of Indo-Pacific gorgonian corals are modified under the influence of microbial associations[J]. Coral Reefs, 2022, 41: 277−291. doi: 10.1007/s00338-022-02222-1
    [40] Greenberg M E, Li Xinmin, Gugiu B G, et al. The lipid whisker model of the structure of oxidized cell membranes[J]. Journal of Biological Chemistry, 2008, 283(4): 2385−2396. doi: 10.1074/jbc.M707348200
    [41] Han Xianlin, Gross R W. The foundations and development of lipidomics[J]. Journal of Lipid Research, 2022, 63(2): 100164. doi: 10.1016/j.jlr.2021.100164
    [42] Domenick T M, Gill E L, Vedam-Mai V, et al. Mass spectrometry-based cellular metabolomics: current approaches, applications, and future directions[J]. Analytical Chemistry, 2021, 93(1): 546−566. doi: 10.1021/acs.analchem.0c04363
    [43] Imbs A B, Latyshev N A, Dautova T, et al. Distribution of lipids and fatty acids in corals by their taxonomic position and presence of zooxanthellae[J]. Marine Ecology Progress Series, 2010, 409: 65−75. doi: 10.3354/meps08622
    [44] Baumann J, Grottoli A G, Hughes A D, et al. Photoautotrophic and heterotrophic carbon in bleached and non-bleached coral lipid acquisition and storage[J]. Journal of Experimental Marine Biology and Ecology, 2014, 461: 469−478. doi: 10.1016/j.jembe.2014.09.017
    [45] Chen Hungkai, Wang L H, Chen W N U, et al. Coral lipid bodies as the relay center interconnecting diel-dependent lipidomic changes in different cellular compartments[J]. Scientific Reports, 2017, 7: 3244. doi: 10.1038/s41598-017-02722-z
    [46] Revel J, Massi L, Mehiri M, et al. Differential distribution of lipids in epidermis, gastrodermis and hosted Symbiodinium in the sea anemone Anemonia viridis[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2016, 191: 140−151
    [47] Pasaribu B, Lin I P, Tzen J T C, et al. SLDP: a novel protein related to caleosin is associated with the endosymbiotic symbiodinium lipid droplets from euphyllia glabrescens[J]. Marine Biotechnology, 2014, 16(5): 560−571. doi: 10.1007/s10126-014-9574-z
    [48] Fitt W K. Chemosensory responses of the symbiotic dinoflagellate Symbiodinium microadriaticum (dinophyceae)[J]. Journal of Phycology, 1985, 21(1): 62−67. doi: 10.1111/j.0022-3646.1985.00062.x
    [49] Ishikura M, Hagiwara K, Takishita K, et al. Isolation of new symbiodinium strains from tridacnid giant clam (Tridacna crocea) and sea slug (Pteraeolidia ianthina) using culture medium containing giant clam tissue homogenate[J]. Marine Biotechnology, 2004, 6(4): 378−385. doi: 10.1007/s10126-004-1800-7
    [50] Krueger T, Gates R D. Cultivating endosymbionts — host environmental mimics support the survival of symbiodinium C15 ex hospite[J]. Journal of Experimental Marine Biology and Ecology, 2012, 413: 169−176. doi: 10.1016/j.jembe.2011.12.002
    [51] Buerger P, Alvarez-ROA C, Coppin C W, et al. Heat-evolved microalgal symbionts increase coral bleaching tolerance[J]. Science Advances, 2020, 6(20): eaba2498. doi: 10.1126/sciadv.aba2498
    [52] 覃良云, 许勇前, 陈金妮, 等. 造礁石珊瑚共生虫黄藻离体培养方法的优化[J]. 微生物学报, 2023, 63(4): 1658−1671.

    Qin Liangyun, Xu Yongqian, Chen Jinni, et al. Optimization of in vitro culture method for zooxanthellae associated with reef-building corals[J]. Acta Microbiologica Sinica, 2023, 63(4): 1658−1671.
    [53] Andersen R A. Algal Culturing Techniques[M]. New York: Academic press, 2005.
    [54] Goldman J C, Mccarthy J J. Steady state growth and ammonium uptake of a fast-growing marine diatom[J]. Limnology and Oceanography, 1978, 23(4): 695−703. doi: 10.4319/lo.1978.23.4.0695
    [55] Waheed Z, Hoeksema B. Diversity patterns of scleractinian corals at Kota Kinabalu, Malaysia, in relation to exposure and depth[J]. The Raffles Bulletin of Zoology, 2014, 62: 66−82.
    [56] Strychar K, Sammarco P. Effects of heat stress on phytopigments of zooxanthellae (Symbiodinium spp. ) symbiotic with the corals acropora hyacinthus, Porites solida, and Favites complanata[J]. International Journal of Biology, 2012, 4(1).
    [57] Ritchie R J. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents[J]. Photosynthesis Research, 2006, 89(1): 27−41. doi: 10.1007/s11120-006-9065-9
    [58] Rijstenbil J W. Assessment of oxidative stress in the planktonic diatom Thalassiosira pseudonana in response to UVA and UVB radiation[J]. Journal of Plankton Research, 2002, 24(12): 1277−1288. doi: 10.1093/plankt/24.12.1277
    [59] Lesser M P, Farrell J H. Exposure to solar radiation increases damage to both host tissues and algal symbionts of corals during thermal stress[J]. Coral Reefs, 2004, 23: 367−377. doi: 10.1007/s00338-004-0392-z
    [60] Buck B H, Rosenthal H, Saint-Paul U. Effect of increased irradiance and thermal stress on the symbiosis of Symbiodinium microadriaticum and Tridacna gigas[J]. Aquatic Living Resources, 2002, 15(2): 107−117. doi: 10.1016/S0990-7440(02)01159-2
    [61] Goulet T L, Cook C B, Goulet D. Effect of short‐term exposure to elevated temperatures and light levels on photosynthesis of different host‐symbiont combinations in the Aiptasia pallida/Symbiodinium symbiosis[J]. Limnology and Oceanography, 2005, 50(5): 1490−1498. doi: 10.4319/lo.2005.50.5.1490
    [62] Muller‐Parker G, Pierce‐Cravens J, Bingham B L. Broad thermal tolerance of the symbiotic dinoflagellate symbiodinium muscatinei (dinophyta) in the sea anemone Anthopleura elegantissima (cnidaria) from northern latitudes1[J]. Journal of Phycology, 2007, 43(1): 25−31. doi: 10.1111/j.1529-8817.2006.00302.x
    [63] 刘旭. 造礁石珊瑚对温度胁迫的响应机制研究[D]. 南宁: 广西大学, 2020.

    Liu X. Responsive mechanism of reef-building coral rocks to temperature stress[D]. Nanning: Guangxi University, 2020.
    [64] Murata N, Takahashi S, Nishiyama Y, et al. Photoinhibition of photosystem II under environmental stress[J]. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2007, 1767(6): 414−421. doi: 10.1016/j.bbabio.2006.11.019
    [65] Nishiyama Y, Allakhverdiev S I, Murata N. A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II[J]. Biochimica Et Biophysica Acta(BBA)-Bioenergetics, 2006, 1757(7): 742−749. doi: 10.1016/j.bbabio.2006.05.013
    [66] Venn A A, Loram J E, Douglas A E. Photosynthetic symbioses in animals[J]. Journal of Experimental Botany, 2008, 59(5): 1069−1080. doi: 10.1093/jxb/erm328
    [67] Del Rio D, Stewart A J, Pellegrini N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress[J]. Nutrition, Metabolism and Cardiovascular Diseases, 2005, 15(4): 316−328. doi: 10.1016/j.numecd.2005.05.003
    [68] Fridovich I. Superoxide anion radical (O·̄2), superoxide dismutases, and related matters[J]. Journal of Biological Chemistry, 1997, 272(30): 18515−18517. doi: 10.1074/jbc.272.30.18515
    [69] Barshis D J, Ladner J T, Oliver T A, et al. Lineage-Specific transcriptional profiles of symbiodinium spp. unaltered by heat stress in a coral host[J]. Molecular Biology and Evolution, 2014, 31(6): 1343−1352. doi: 10.1093/molbev/msu107
    [70] Rosic N N, Pernice M, Dove S, et al. Gene expression profiles of cytosolic heat shock proteins Hsp70 and Hsp90 from symbiotic dinoflagellates in response to thermal stress: possible implications for coral bleaching[J]. Cell Stress and Chaperones, 2011, 16(1): 69−80. doi: 10.1007/s12192-010-0222-x
    [71] Li-Beisson Y, Thelen J J, Fedosejevs E, et al. The lipid biochemistry of eukaryotic algae[J]. Progress in Lipid Research, 2019, 74: 31−68. doi: 10.1016/j.plipres.2019.01.003
    [72] Maxfield F R, Tabas I. Role of cholesterol and lipid organization in disease[J]. Nature, 2005, 438(7068): 612−621. doi: 10.1038/nature04399
    [73] Veldhuis M, Gijsbert K, Timmermans K. Cell death in phytoplankton: correlation between changes in membrane permeability, photosynthetic activity, pigmentation and growth[J]. European Journal of Phycology, 2001, 36(2): 167−177. doi: 10.1080/09670260110001735318
    [74] Shevchenko A, Simons K. Lipidomics: coming to grips with lipid diversity[J]. Nature Reviews Molecular Cell Biology, 2010, 11(8): 593−598. doi: 10.1038/nrm2934
    [75] Li F Q, Vierstra R D. Autophagy: a multifaceted intracellular system for bulk and selective recycling[J]. Trends in plant science, 2012, 17(9): 526−537. doi: 10.1016/j.tplants.2012.05.006
    [76] Singh R, Kaushik S, Wang Y Q, et al. Autophagy regulates lipid metabolism[J]. Nature, 2009, 458(7242): 1131−1135. doi: 10.1038/nature07976
    [77] Hou Q C, Ufer G, Bartels D. Lipid signalling in plant responses to abiotic stress[J]. Plant, Cell & Environment, 2016, 39(5): 1029−1048
    [78] Berkowitz L, Cabrera-Reyes F, Salazar C, et al. Sphingolipid profiling: a promising tool for stratifying the metabolic syndrome-associated risk[J]. Frontiers in Cardiovascular Medicine, 2022, 8: 785124. doi: 10.3389/fcvm.2021.785124
    [79] Huang W C, Chen C L, Lin Y S, et al. Apoptotic sphingolipid ceramide in cancer therapy[J]. Journal of Lipids, 2011, 2011: 565316.
    [80] Sun X F, Li Y, Du J, et al. Targeting ceramide transfer protein sensitizes AML to FLT3 inhibitors via a GRP78-ATF6-CHOP axis[J]. Nature Communications, 2025, 16(1): 1358. doi: 10.1038/s41467-025-56520-7
    [81] Li Y Z, Wang L C, Wang H M, et al. Polysaccharides from Eucommia ulmoides Oliv. leaves alleviates alcohol-induced mouse brain injury and BV-2 microglial dysfunction[J]. International Journal of Biological Macromolecules, 2024, 273: 132887. doi: 10.1016/j.ijbiomac.2024.132887
    [82] Zhang M, Su R N, Corazzin M, et al. Lipid transformation during postmortem chilled aging in Mongolian sheep using lipidomics[J]. Food Chemistry, 2023, 405: 134882. doi: 10.1016/j.foodchem.2022.134882
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  13
  • HTML全文浏览量:  4
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-13
  • 修回日期:  2025-04-25
  • 网络出版日期:  2025-05-30

目录

    /

    返回文章
    返回