留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

造礁珊瑚热适应相关功能基因的研究进展

马玉玲 俞小鹏 余克服 陈俊伶 郑月 陈健

马玉玲,俞小鹏,余克服,等. 造礁珊瑚热适应相关功能基因的研究进展[J]. 海洋学报,2025,47(x):1–21
引用本文: 马玉玲,俞小鹏,余克服,等. 造礁珊瑚热适应相关功能基因的研究进展[J]. 海洋学报,2025,47(x):1–21

造礁珊瑚热适应相关功能基因的研究进展

基金项目: 国家自然科学基金重大项目(42030502 )、广西科技基地与人才专项(桂科 AD25069075)、国家自然科学基金重点项目(42090041)、国家自然科学基金( 42406143);广西研究生教育创新计划资助项目(YCBZ2024045)。
详细信息
    作者简介:

    马玉玲(2001—),女,广西崇左人,硕士,主要研究生物与生态方向。E-mail:2327301017@st.gxu.edu.cn

    通讯作者:

    余克服,教授,主要从事南海珊瑚礁地质和生态环境方面的研究工作。E-mail:kefuyu@scsio.ac.cn; 俞小鹏,助理教授,主要从事南海珊瑚生态与环境适应机制研究工作。E-mail:yuxiaopeng100@foxmail.com

  • 摘要: 全球变暖和极端高温事件导致了珊瑚大规模白化,引起全球珊瑚礁生态系统的快速退化。识别热适应相关的功能基因有助于进一步揭示珊瑚对全球变暖的响应及适应策略,科学预测珊瑚礁生态系统的发育趋势。但目前对珊瑚共生功能体热适应分子机制的认识非常不足。因此,本文综述了珊瑚热适应相关功能基因的研究进展。热适应相关基因在珊瑚受到热胁迫后会产生一系列的连锁反应。首先,Toll受体等识别受体识别到热胁迫后参与信号通路激活进而启动免疫响应过程,主要包括:热休克蛋白基因上调使变性多肽重新折叠;抗氧化蛋白基因上调避免活性氧损伤;细胞凋亡与细胞焦亡基因清除“有害”细胞。随着热胁迫加剧,珊瑚会启动一系列复杂过程共同维持细胞稳态,包括:光保护蛋白基因快速修复虫黄藻光系统、宿主荧光蛋白基因维持氧化平衡;钙离子通道蛋白基因维持细胞内Ca2+水平稳定;代谢基因保持代谢平衡以确保营养供给;细胞周期调控基因抑制细胞复制以保存能量;细胞骨架基因维持珊瑚骨架的完整性;泛素相关基因调节蛋白质的去泛素化等。此外,反复出现的热胁迫对珊瑚具有驯化作用,可能通过减缓珊瑚宿主代谢、减少热胁迫相关蛋白质的损伤、提高抗氧化物和铵同化酶等活性等提高珊瑚耐热性。
  • 图  1  热适应相关功能基因变化示意图

    Fig.  1  Schematic diagram of changes in functional genes related to thermal adaptation

    图  2  热胁迫后造礁珊瑚关键热适应基因变化。(蓝色为下调,红色为上调)

    Fig.  2  Key heat adaptation gene changes in corals after heat stress.(Blue is downregulated and upregulated in red)

    表  1  珊瑚热适应相关功能基因列表

    Tab.  1  List of functional genes related to coral's thermal adaptation

    研究
    对象
    采用技术 GenBank
    Acc.
    基因
    (蛋白)
    已开展研究珊瑚物种 研究区域 潜在功能 热胁迫响应
    过程
    参考文献
    免疫相关基因 珊瑚
    宿主
    RNA-Seq ;cDNA 微阵列分析 NW018149896 Nf-kβ1 Acropora millepora、
    Acropora aspera
    大堡礁 DNA修复, 染色质稳定相关 温度升高表达量降低 van de Water et al [45]
    van de Water et al [46]
    NW018149776 Nf-kβ2
    NW018148758 补体因子c3样蛋白(C3-Am) Montastraea faveolata
    Acropora millepora、
    Acropora aspera
    加勒比海;
    大堡礁
    免疫相关;病原体的直接
    杀伤
    温度升高表达量升高 Desalvo et al[47]
    van de Water et al [45]
    van de Water et al [46]
    珊瑚宿主;虫黄藻 RNA-Seq ;cDNA 微阵列分析 XM020776963 C型凝集素 Montastraea faveolata
    Acropora millepora、
    Pocillopora damicornis
    加勒比海;
    南海
    识别病原菌达到免疫作用 温度升高表达量降低 吴逸波[48]
    Wu et al [49]
    Desalvo et al [39]
    NW018150402 半乳糖凝集素(galectin)
    珊瑚
    宿主
    RNA-Seq ;cDNA 微阵列分析 HSP16 Porites astreoides 墨西哥湾 抗氧化作用;抗凋亡 温度升高表达量升高 Kenkel et al [50]
    HSP32 Pocillopora damicornis 琉球群岛 Thummasan et al [51]
    GAL06223 HSP60 Pocillopora damicornis
    Seriatopora caliendrum
    Montastraea faveolata
    琉球群岛;
    地中海;
    加勒比海
    促进新合成蛋白的折叠阻止细胞凋亡 Thummasan et al [51]
    Seveso et al [52]
    Desalvo et al [39]
    DR987088 TCP-1
    珊瑚宿主;虫黄藻 NW018148923 HSP70 Acropora tenuis、
    Acropora muricata

    Goniopora djiboutiensis
    ;Porites lutea

    印度洋;
    缅甸海;
    南海
    抑制细胞凋亡;变性蛋白重折叠 Louis et al [53]
    Li et al [54]
    Xiao et al [55]
    Sharp et al [56]
    DR988373 HSP90 Montastraea faveolata
    Acropora tenuis
    加勒比海;
    琉球群岛
    负责新合成多肽的构象成熟和变性蛋白的再成熟 Desalvo et al [39]
    张 懿 丹[57]
    Yuyama et al [27]
    珊瑚
    宿主
    HSP100 Pocillopora damicornis 南海 水 解 酶 活 性 ;降 解 变 性多肽聚合体 张 懿 丹[57]
    珊瑚宿主;虫黄藻 RNA-Seq;cDNA 微阵列分析 DR987062 Glutathione S-transferasesigma(GST-S) Montastraea faveolata
    Favia favus
    Mussismilia sp.
    Siderastrea sp.
    Porites sp.、
    Acropora sp.
    Porites lutea
    Acropora pruinosa
    加勒比海;
    红海;
    南大西洋;
    大加纳利岛;
    南海
    免疫作用 温度升高表达量升高 黄晖等[14]
    Desalvo et al [39]
    Levy et al [58]
    Martignago et al [59]
    Camilo et al [60]
    Vilas et al [61]
    蒙林庆等 [62]
    Yu et al [8]
    DR988371 Glutathione S-tranferaseMu(GST-M) 细胞防御相关 温度升高表达量降低
    NW018149119 谷胱甘肽过氧化物酶(GSH-Px) ECM固结,过氧化物酶活性;增强细胞抗氧化能力;增强免疫力 温度升高表达量升高
    NW018150375 超氧化物歧化酶(SOD)
    DR987689 过氧化氢酶(CAT)
    DR988170 锌指蛋白基因
    (Zn2+-metalloprotease)
    Montastraea faveolata
    Acropora millepora
    Porites lutea
    加勒比海;
    大堡礁;
    南海
    锌离子结合转录因子 温度升高表达
    量升高
    Desalvo et al [39]
    Császár et al [63]
    许昌有等[64]
    FE039547 Ferritin 铁离子结合;平衡铁浓度 温度升高表达量升高
    CAON1879 细胞色素(p450) Montastraea faveolata;
    Pocillopora damicornis;
    Acropora aspera
    加勒比海;
    南海;
    大堡礁
    参与细胞解毒;抗氧化 温度升高表达量升高 Louis et al [11]
    Liu et al [65]
    Rosic et al [66]
    免疫相关基因 珊瑚宿主;虫黄藻 RNA-Seq;RNAi;cDNA 微阵列分析 TRX Acropora tenuis
    Diploria strigosa
    Acropora cervicornis、
    Montastraea faveolata
    琉球群岛;
    百慕大群岛;
    佛罗里达群岛
    螯合活性氧 温度升高表达量升高 Morgan et al [67]
    Yuyama et al [37]
    Edge et al [68]
    FE040110 NADH-ubiquinone Montastraea faveolata
    Galaxea facicularis
    Acropora sp.
    琉球群岛 线粒体电子传递;建立合成ATP所需的跨膜质子梯度 温度升高表达量降低 Voolstra et al [69]
    珊瑚宿主;虫黄藻 RNA-Seq NW018150375 Bcl-2 Acropora aspera、
    Acropora millepora
    大堡礁 调控凋亡 温度升高表达量升高 T.D.A et al [70]
    Pernice et al [71]
    NW018150269 caspase 3 Acropora millepora;
    Pocillopora damicornis

    Orbicella faveolata
    Porites Astreoides;
    大堡礁;
    琉球群岛、
    南海;
    加勒比海
    细胞凋亡指
    示剂
    Pernice et al [71]
    Thummasan et al [51]
    Yu et al [72]
    Shrestha et al [73]
    Gasdermins Pocillopora damicornis 南海 引发细胞焦亡 Jiang et al [74]
    珊瑚
    宿主
    RNA-Seq ;cDNA 微阵列分析 NW018148758 补体因子c3样蛋白(C3-Am) Montastraea faveolata
    Acropora millepora、
    Acropora aspera
    加勒比海;
    大堡礁
    免疫相关;病原体的直接
    杀伤
    温度升高表达量升高 Desalvo et al [39]
    van de Water et al [45]
    van de Water et al [46]
    DR988012 组蛋白(H3) Montastraea faveolata
    Acropora formosa
    加勒比海、墨西哥湾;
    大堡礁
    核小体组装 温度升高表达量降低 Desalvo et al [39]
    Miller et al [75]
    Voolstra et al [76]
    DR988033 组蛋白(H2A)
    DR987246 H2A 家族
    代谢相关基因 珊瑚
    宿主
    RNA-Seq;cDNA 微阵列分析 FE040151 MAT 1α Montastraea faveolata
    Galaxea facicularis
    Acropora sp.
    加勒比海、西大西洋 S-腺苷甲硫氨酸生物合成 温度升高表达量升高 Desalvo et al [39, 47]
    Watanabe et al [77]
    Voolstra et al [69]
    RNA-Seq 异柠檬酸裂解酶 (IL) Acropora millepora
    Pocillopora astreoides
    Pocillopora woodjonesi、
    Pocillopora kelleheri、
    Pocillopora verrucose
    大堡礁 从脂质β-氧化产物中合成碳水化合物 温度升高表达量升高 Rocker et al [78]
    Kenkel et al [79]
    Sun et al [7]
    苹果酸合酶
    (MS)
    墨西哥湾
    丙酮酸羧激酶 (PEPCK) 南海 促进糖异生
    增强
    温度升高表达量升高
    丙酮酸羧化酶(PC)
    甘油醛-3-磷酸脱氢酶 (GAPDHs) Pavona decussata 南海; 参与糖降解,维持珊瑚能量代谢平衡 温度升高表达量升高 Zhang et al [80]
    丙酮酸脱氢酶复合物 (DLATs)
    匀浆 1,2 双加氧酶(HGDs)
    谷氨酸脱氢酶 (GDHs) Pavona decussata、
    Stylophora pistillata
    南海;红海 分解代谢谷氨酸以推动 TCA 循环 温度升高表达量升高 Zhang et al [80]
    Rädecker et al [81]
    谷氨酰胺合成酶
    (GS)
    Stylophora pistillata 红海 温度升高表达量降低 Rädecker et al [81]
    谷氨酸合酶
    (GOGAT)
    共生微生物 宏基因组测序 糖基转移酶
    (GT)
    Favites sp. 南海 合成多糖/糖蛋白 温度升高表达量升高 Sun F et al [82]
    糖苷水解酶
    (GH)
    降解和转化碳水化合物 温度升高表达量降低
    代谢相关基因 共生微生物 宏基因组测序 碳水化合物
    酯酶(CE)
    Favites sp. 南海 降解和转化碳水化合物 温度升高表达量降低 Sun F et al [82]
    光保护蛋白相关基因 虫黄藻 RNA-Seq PsaA Pocillopora woodjones、
    Pocillopora kelleheri、
    Pocillopora verrucose、
    Galaxea astreata、
    Acropora tenuis
    南海 修复虫黄藻光系统结构;增强光合能力 温度升高表达量升高 Sun et al [83]
    沈城等[84]
    Gong et al [85]
    PsaC
    PsbA
    PsbB
    PsbC
    PsbD
    PsbO
    珊瑚
    宿主
    RNA-Seq ;RNAi;cDNA 微阵列分析 DR987865 GFP Montastraea faveolata
    Acropora yongei
    Acropora millepora、
    Acropora digitifera、
    Montipora digitata

    Goniopora lobata、
    Goniopora norfolkensis
    加勒比海;
    西太平洋;
    大堡礁;
    南海
    能量传递受体;光保护;抗氧化与 珊 瑚 颜 色 相 关 随光照的增加减少而快速变化;温度升高表达量降低 Desalvo et al [39]
    Roth et al [86]
    Smith-Keune [87]
    Conaco et al [88]
    黄文靖[89]
    RNA-Seq ;cDNA 微阵列分析 RFP Acropora digitifera、
    Montipora digitata、
    Favites colemani、
    Seriatopora caliendrum

    Goniopora lobata、
    Goniopora norfolkensis
    大堡礁;
    南海
    Conaco et al [88]
    黄文靖[89]
    CFP
    钙离子通道蛋白相关基因 珊瑚
    宿主
    RNA-Seq ;cDNA 微阵列分析 DR987851 Similar to EF-hand
    domain protein
    Montastraea faveolata 加勒比海 Ca 2+ 结合
    区域
    温度升高表达量降低 Desalvo et al [39]
    DR987178 CaM Montastraea faveolata
    Galaxea astreata、
    Acropora muricata
    加勒比海;
    南海
    视紫红素介导的信号调节;维持Ca2+平衡 高温下表达量降低 Desalvo et al [39]
    Huang et al [90]
    黄元佳[91]
    Chiou et al [92]
    NW018149378 CRT Montastraea faveolata
    Galaxea astreata
    Acropora tenuis
    加勒比海、墨西哥湾;
    南海;
    琉球群岛
    维持 Ca 2+ 稳态;内质网 ER Ca2+ 容量
    的调节
    温度升高表达量降低 Desalvo et al [39]
    黄元佳[91]
    Huang et al [93]
    Voolstra et al [76]
    Yuyama et al [27]
    DR987943 Galaxin Montastraea faveolata、
    Galaxea fascicularis
    加勒比海 有机基质可溶性蛋白;作为分子伴侣协助维持细胞内Ca2+稳态水平 Desalvo et al [39]
    NW018148627 TnC Acropora muricata 南海、东大西洋 Chiou et al
    Weston et al [94]
    DR987097 SCRiP3A Montastraea faveolata 加勒比海、墨西哥湾 分泌肽;细胞凋亡相关 黄晖等[14]
    Desalvo et al [39]
    Reyes-Bermudez et al [95]
    DR987884 SCRiP5
    DR987486 SCRiP8
    DR987831 SCRiP1
    DR987097 SCRiP2
    DR987965 SCRiP7
    细胞生长调控基因 珊瑚
    宿主
    RNA-Seq ;cDNA 微阵列分析 NW018148815 DNA replication licensing factor mcm7-A Montastraea faveolata;
    Acropora tenuis
    加勒比海、墨西哥湾;
    琉球群岛
    DNA 复制许可因子 温度升高表达量降低 Desalvo et al [39]
    Yuyama et al [27]
    Voolstra et al [76]
    NW018150375 DNAJ
    (Hsp40)
    参与内质网未折叠蛋白反应 温度升高表达量升高
    DR986717 RPL3 Montastraea faveolata
    Acropora pruinosa、
    Acropora nasuta
    加勒比海;
    南海
    蛋白质合成;核糖体的结构成分 温度升高表达量升高 Desalvo et al [39]
    Tian and W [96]
    DR986615 RPL9
    细胞生长调控基因 珊瑚
    宿主
    RNA-Seq ;cDNA 微阵列分析 DR988078 RPL14 Montastraea faveolata
    Acropora pruinosa、
    Acropora nasuta
    加勒比海;
    南海
    蛋白质合成;核糖体的结构成分 温度升高表达量升高 Desalvo et al [39]
    Tian and W [96]
    AXP85384 RPL16
    DR987703 RPL23
    DR987703 RPL26
    DR986615 RPS2
    DR988446 RP S3
    DR988446 RP S5
    DR988266 RPS7
    DR986825 RPS25
    NW018148536 细胞周期基因(CDK2) Montastraea faveolata 加勒比海、墨西哥湾 调控G1/S期 温度升高表达量降低 Desalvo et al [39]
    Voolstra et al [76]
    其他
    基因
    珊瑚
    宿主
    RNA-Seq ;cDNA 微阵列 DR988150 凝胶素Gelsolin (GSN) Montastraea faveolata
    Pocillopora astreoides、
    Acropora cervicornis
    加勒比海;
    西大西洋
    钙调节的肌动蛋白切断蛋白 温度升高表达量降低 Desalvo et al [39]
    Vollmer et al [97]
    Kenkel et al [98]
    DR986355 原肌球蛋白(TPM) 肌动蛋白结合细胞骨架成分
    FE039783 Lethal giant larvae homologue 2 (LGL2) 细胞骨架组织;半桥体组装
    DR988233 肌球蛋白 9A (MYO9A) 肌动蛋白依赖性ATP酶活性 温度升高表达量升高
    DR987650 肌球蛋白 7A (MYO7A)
    珊瑚
    宿主
    RNA-Seq ;cDNA 微阵列 DR986515 泛素偶联酶 E2S Montastraea faveolata
    Galaxea fascicularis、
    Montipora capricornis
    加勒比海;
    东大西洋
    蛋白质的去泛素化;膜转运 温度升高表达量降低 Desalvo et al [39]
    Yohann et al [99]
    DR987159 泛素特异性蛋白酶 24 (USP24) 蛋白质的去泛素化 温度升高表达量升高
    下载: 导出CSV
  • [1] Souter D P S W. Global coral reef monitoring network (GCRMN) and international coral reef initiative (ICRI)[C]. 2020. (查阅网上资料, 未找到本条文献信息, 请确认)
    [2] Cannon S E, Aram E, Beiateuea T, et al. Coral reefs in the gilbert islands of kiribati: resistance, resilience, and recovery after more than a decade of multiple stressors[J]. PLoS One, 2021, 16(8): e0255304. doi: 10.1371/journal.pone.0255304
    [3] Head C E I, Bayley D T I, Rowlands G, et al. Coral bleaching impacts from back-to-back 2015-2016 thermal anomalies in the remote central Indian ocean[J]. Coral Reefs, 2019, 38(4): 605−618. doi: 10.1007/s00338-019-01821-9
    [4] Zuo Xiuling, Qin Binni, Teng Juncan, et al. Optimized spatial and temporal pattern for coral bleaching heat stress alerts for China's coral reefs[J]. Marine Environmental Research, 2023, 191: 106152. doi: 10.1016/j.marenvres.2023.106152
    [5] Lee I H, Fan T Y, Fu K H, et al. Temporal variation in daily temperature minima in coral reefs of Nanwan Bay, Southern Taiwan[J]. Scientific Reports, 2020, 10(1): 8656. doi: 10.1038/s41598-020-65194-8
    [6] Hsieh Y E, Lu C Y, Liu Poyu, et al. Successive responses of three coral holobiont components (coral hosts, symbiotic algae, and bacteria) to daily temperature fluctuations[J]. Ecological Indicators, 2024, 158: 111515. doi: 10.1016/j.ecolind.2023.111515
    [7] Sun Fulin, Yang Hongqiang, Zhang Xiyang, et al. Metabolic and metatranscriptional characteristics of corals bleaching induced by the most severe marine heatwaves in the South China Sea[J]. Science of the Total Environment, 2023, 858: 160019. doi: 10.1016/j.scitotenv.2022.160019
    [8] Yu Xiaopeng, Yu Kefu, Huang Wen, et al. Thermal acclimation increases heat tolerance of the scleractinian coral Acropora pruinosa[J]. Science of the Total Environment, 2020, 733: 139319. doi: 10.1016/j.scitotenv.2020.139319
    [9] Lyu Yihua, Zhou Zihua, Zhang Yangmei, et al. The mass coral bleaching event of inshore corals form South China Sea witnessed in 2020: insight into the causes, process and consequence[J]. Coral Reefs, 2022, 41(5): 1351−1364. doi: 10.1007/s00338-022-02284-1
    [10] Cziesielski M J, Schmidt-Roach S, Aranda M. The past, present, and future of coral heat stress studies[J]. Ecology and Evolution, 2019, 9(17): 10055−10066. doi: 10.1002/ece3.5576
    [11] Louis Y D, Bhagooli R, Kenkel C D, et al. Gene expression biomarkers of heat stress in scleractinian corals: promises and limitations[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2017, 191: 63−77.
    [12] Lima L F O, Alker A T, Papudeshi B, et al. Coral and seawater metagenomes reveal key microbial functions to coral health and ecosystem functioning shaped at reef scale[J]. Microbial Ecology, 2023, 86(1): 392−407. doi: 10.1007/s00248-022-02094-6
    [13] Fuller Z L, Mocellin V J L, Morris L A, et al. Population genetics of the coral Acropora millepora: toward genomic prediction of bleaching[J]. Science, 2020, 369(6501): eaba4674. doi: 10.1126/science.aba4674
    [14] 黄晖, 许昌有, 袁涛. 造礁石珊瑚白化相关功能基因的研究进展[J]. 热带海洋学报, 2013, 32(4): 43−50. doi: 10.3969/j.issn.1009-5470.2013.04.007

    Huang Hui, Xu Changyou, Yuan Tao. Research progress on functional genes involved in coral bleaching[J]. Journal of Tropical Oceanography, 2013, 32(4): 43−50. doi: 10.3969/j.issn.1009-5470.2013.04.007
    [15] 袁吉贵, 刘丽, 张艳苹. 珊瑚白化及温度相关基因的研究进展[J]. 基因组学与应用生物学, 2018, 37(9): 3810−3816.

    Yuan Jigui, Liu Li, Zhang Yanping. Research progress on coral bleaching and temperature related genes[J]. Genomics and Applied Biology, 2018, 37(9): 3810−3816.
    [16] Traylor-Knowles N, Connelly M T. What is currently known about the effects of climate change on the coral immune response[J]. Current Climate Change Reports, 2017, 3(4): 252−260. doi: 10.1007/s40641-017-0077-7
    [17] Louis Y D, Bhagooli R, Kenkel C D, et al. Gene expression biomarkers of heat stress in scleractinian corals: promises and limitations[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2017, 191: 63−77. (查阅网上资料, 本条文献与第11条文献重复, 请确认)
    [18] Cornet V J, Cantin N E, Joyce K E, et al. Enhancing coral bleaching predictive tools through integrating sensitivity to heat exposure[J]. Biological Conservation, 2025, 302: 110958. doi: 10.1016/j.biocon.2024.110958
    [19] Dutra L X C, Haywood M D E, Singh S, et al. Synergies between local and climate-driven impacts on coral reefs in the Tropical Pacific: a review of issues and adaptation opportunities[J]. Marine Pollution Bulletin, 2021, 164: 111922. doi: 10.1016/j.marpolbul.2020.111922
    [20] Han D H T, James D, Waheed Z, et al. THREE-DECADE changes of reef cover in pulau layang-layang, malaysia using multitemporal landsat images[J]. Marine Environmental Research, 2024, 197: 106454. doi: 10.1016/j.marenvres.2024.106454
    [21] Lachs L, Donner S D, Mumby P J, et al. Emergent increase in coral thermal tolerance reduces mass bleaching under climate change[J]. Nature Communications, 2023, 14(1): 4939. doi: 10.1038/s41467-023-40601-6
    [22] 马静, 余克服. 大规模白化对珊瑚礁生态系统的影响研究进展[J]. 生态学杂志, 2023, 42(9): 2227−2240.

    Ma Jing, Yu Kefu. Effects of mass bleaching events on coral reef ecosystems[J]. Chinese Journal of Ecology, 2023, 42(9): 2227−2240.
    [23] Marangon E, Rädecker N, Li J Y Q, et al. Destabilization of mutualistic interactions shapes the early heat stress response of the coral holobiont[J]. Microbiome, 2025, 13(1): 31. doi: 10.1186/s40168-024-02006-5
    [24] Tanaka Y, Inoue M, Nakamura T, et al. Loss of zooxanthellae in a coral under high seawater temperature and nutrient enrichment[J]. Journal of Experimental Marine Biology and Ecology, 2014, 457: 220−225. doi: 10.1016/j.jembe.2014.04.019
    [25] 舒杨. 珊瑚、虫黄藻及微生物组的多组学分析: 全共生体生长, 胁迫, 驯化及重构[D]. 海口: 海南大学, 2022.

    Shu Yang. Multi-omic analysis of coral, Symbiodinium and microbiota: growth, stress, acclimation and reconstruction of coral holobiont[D]. Haikou: Hainan University, 2022.
    [26] Hazraty-Kari S, Tavakoli-Kolour P, Kitanobo S, et al. Adaptations by the coral Acropora tenuis confer resilience to future thermal stress[J]. Communications Biology, 2022, 5(1): 1371. doi: 10.1038/s42003-022-04309-5
    [27] Yuyama I, Ito Y, Watanabe T, et al. Differential gene expression in juvenile polyps of the coral acropora tenuis exposed to thermal and chemical stresses[J]. Journal of Experimental Marine Biology and Ecology, 2012, 430-431: 17−24. doi: 10.1016/j.jembe.2012.06.020
    [28] Hackerott S, Martell H A, Eirin-Lopez J M. Coral environmental memory: causes, mechanisms, and consequences for future reefs[J]. Trends in Ecology & Evolution, 2021, 36(11): 1011−1023.
    [29] 杜玉梅, 左正宏. 基因功能研究方法的新进展[J]. 生命科学, 2008, 20(4): 589−592. doi: 10.3969/j.issn.1004-0374.2008.04.013

    Du Yumei, Zuo Zhenghong. Advances in research methods for gene function[J]. Chinese Bulletin of Life Sciences, 2008, 20(4): 589−592. doi: 10.3969/j.issn.1004-0374.2008.04.013
    [30] Jiang Hui, Wong W H. Statistical inferences for isoform expression in RNA-seq[J]. Bioinformatics, 2009, 25(8): 1026−1032. doi: 10.1093/bioinformatics/btp113
    [31] 雷华, 赵广展, 林志艺. 基因功能验证方法及研究进展[J]. 四川农业科技, 2023(9): 83−86.

    Lei Hua, Zhao Guangzhan, Lin Zhiyi. Methods and research advances in gene function verification[J]. Sichuan Agricultural Science and Technology, 2023(9): 83−86. (查阅网上资料, 未找到对应的英文翻译, 请确认)
    [32] van Oppen M J H, Oakeshott J G. A breakthrough in understanding the molecular basis of coral heat tolerance[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(46): 28546−28548.
    [33] 赵文君. 应用RNAi技术验证灰树花AAP基因功能[D]. 牡丹江: 牡丹江师范学院, 2023.

    Zhao Wenjun. Application of RNAi technology to verify the function of AAPgene in Grifola frondosa[D]. Mudanjiang: Mudanjiang Normal University, 2023.
    [34] Dunn S R, Phillips W S, Green D R, et al. Knockdown of actin and caspase gene expression by RNA interference in the symbiotic anemone Aiptasia pallida[J]. The Biological Bulletin, 2007, 212(3): 250−258. doi: 10.2307/25066607
    [35] Technau U, Genikhovich G. Evolution: directives from sea anemone Hox genes[J]. Current Biology, 2018, 28(22): R1303−R1305. doi: 10.1016/j.cub.2018.09.040
    [36] Galliot B, Miljkovic-Licina M, Ghila L, et al. RNAi gene silencing affects cell and developmental plasticity in hydra[J]. Comptes Rendus Biologies, 2007, 330(6/7): 491−497.
    [37] Yuyama I, Higuchi T, Hidaka M. Application of RNA interference technology to acroporid juvenile corals[J]. Frontiers in Marine Science, 2021, 8: 688876. doi: 10.3389/fmars.2021.688876
    [38] Zhou Zhi, Zhang Guoqing, Chen Guangmei, et al. Elevated ammonium reduces the negative effect of heat stress on the stony coral Pocillopora damicornis[J]. Marine Pollution Bulletin, 2017, 118(1/2): 319−327.
    [39] Desalvo M K, Voolstra C R, Sunagawa S, et al. Differential gene expression during thermal stress and bleaching in the Caribbean coral Montastraea faveolata[J]. Molecular Ecology, 2008, 17(17): 3952−3971. doi: 10.1111/j.1365-294X.2008.03879.x
    [40] 郭卓君. 造礁珊瑚全长转录组的测序和分析[D]. 南京: 东南大学, 2022.

    Guo Zhuojun. Sequencing and analysis of full-length transcriptomes of reef-building corals[D]. Nanjing: Southeast University, 2022.
    [41] Morgan M B, Edge S E, Snell T W. Profiling differential gene expression of corals along a transect of waters adjacent to the bermuda municipal dump[J]. Marine Pollution Bulletin, 2005, 51(5/7): 524−533.
    [42] 韩霞, 方佳丽, 孟沈坤儿, 等. 高通量测序技术在药用植物微生物多样性研究中的应用进展[J]. 浙江农业科学, 2024, 65(2): 329−334.

    Han Xia, Fang Jiali, Meng Shenkuner, et al. Application of high-throughput sequencing technology in the study of microbial diversity of medicinal plants[J]. Journal of Zhejiang Agricultural Sciences, 2024, 65(2): 329−334.
    [43] Li Minli, Liu Hongde, Guo Yunxia, et al. Single symbiotic cell transcriptome sequencing of coral[J]. Genomics, 2020, 112(6): 5305−5312. doi: 10.1016/j.ygeno.2020.10.019
    [44] Shikina S, Lin T C, Chu Yiling, et al. Culturing reef-building corals on a laboratory dish: a simple experimental platform for stony corals[J]. Frontiers in Marine Science, 2023, 10: 1149495. doi: 10.3389/fmars.2023.1149495
    [45] van de Water J A J M, Leggat W, Bourne D G, et al. Elevated seawater temperatures have a limited impact on the coral immune response following physical damage[J]. Hydrobiologia, 2015, 759(1): 201−214. doi: 10.1007/s10750-015-2243-z
    [46] van de Water J A J M, Lamb J B, van Oppen M J H, et al. Comparative immune responses of corals to stressors associated with offshore reef-based tourist platforms[J]. Conservation Physiology, 2015, 3(1): cov032. doi: 10.1093/conphys/cov032
    [47] Desalvo M K, Sunagawa S, Fisher P L, et al. Coral host transcriptomic states are correlated with Symbiodinium genotypes[J]. Molecular Ecology, 2010, 19(6): 1174−1186. doi: 10.1111/j.1365-294X.2010.04534.x
    [48] 吴逸波. 鹿角杯形珊瑚半乳糖凝集素识别虫黄藻和病原菌的活性特征研究[D]. 海口: 海南大学; 2019.

    Wu Yibo. The recognition activities of a galectin to pathogen and symbiont in the scleractinian coral Pocillopora damicornis[D]. Haikou: Hainan University; 2019.
    [49] Wu Yibo, Zhou Zhi, Wang Jun, et al. Temperature regulates the recognition activities of a galectin to pathogen and symbiont in the scleractinian coral Pocillopora damicornis[J]. Developmental & Comparative Immunology, 2019, 96: 103−110.
    [50] Kenkel C D, Aglyamova G, Alamaru A, et al. Development of gene expression markers of acute heat-light stress in reef-building corals of the genus Porites[J]. PLoS One, 2011, 6(10): e26914. doi: 10.1371/journal.pone.0026914
    [51] Thummasan M, Casareto B E, Ramphul C, et al. Physiological responses (Hsps 60 and 32, caspase 3, H2O2 scavenging, and photosynthetic activity) of the coral Pocillopora damicornis under thermal and high nitrate stresses[J]. Marine Pollution Bulletin, 2021, 171: 112737. doi: 10.1016/j.marpolbul.2021.112737
    [52] Seveso D, Montano S, Strona G, et al. Exploring the effect of salinity changes on the levels of Hsp60 in the tropical coral Seriatopora caliendrum[J]. Marine Environmental Research, 2013, 90: 96−103. doi: 10.1016/j.marenvres.2013.06.002
    [53] Louis Y D, Bhagooli R, Seveso D, et al. Local acclimatisation-driven differential gene and protein expression patterns of Hsp70 in Acropora muricata: implications for coral tolerance to bleaching[J]. Molecular Ecology, 2020, 29(22): 4382−4394. doi: 10.1111/mec.15642
    [54] Li Chunying, Lee J S, Ko Y G, et al. Heat shock protein 70 inhibits apoptosis downstream of cytochrome c release and upstream of caspase-3 activation[J]. Journal of Biological Chemistry, 2000, 275(33): 25665−25671. doi: 10.1074/jbc.M906383199
    [55] Xiao Yilin, Gao Luyao, Li Zhiyong. Unique high-temperature tolerance mechanisms of zoochlorellae Symbiochlorum hainanensis derived from scleractinian coral porites lutea[J]. mBio, 2024, 15(3): e02780−23.
    [56] Sharp V A, Brown B E, Miller D. Heat shock protein (hsp 70) expression in the tropical reef coral Goniopora djiboutiensis[J]. Journal of Thermal Biology, 1997, 22(1): 11−19. doi: 10.1016/S0306-4565(96)00029-0
    [57] 张懿丹. 热胁迫下鹿角杯形珊蝴HSP70的基因表达与活性分析[D]. 海品: 海南大学, 2016.

    Zhang Yidan. Gene expression and activity analysis of Pocillopora damicornis HSP70 under heat stress[D]. Haikou: Hainan University, 2016.
    [58] Levy O, Achituv Y, Yacobi Y Z, et al. The impact of spectral composition and light periodicity on the activity of two antioxidant enzymes (SOD and CAT) in the coral Favia favus[J]. Journal of Experimental Marine Biology and Ecology, 2006, 328(1): 35−46. doi: 10.1016/j.jembe.2005.06.018
    [59] Martignago D C, Godoy L, Amaral A P, et al. Establishment of oxidative stress biomarkers in oocytes from healthy and bleached scleractinian corals[J]. Journal of Experimental Marine Biology and Ecology, 2024, 570: 151963. doi: 10.1016/j.jembe.2023.151963
    [60] Camilo J P G, Nunes V F C, Miranda R J, et al. Management strategy influences coral oxidative stress responses in a marine protected area in the Southwestern Atlantic[J]. Marine Pollution Bulletin, 2024, 198: 115832. doi: 10.1016/j.marpolbul.2023.115832
    [61] Vilas Bhagwat P, Ravindran C, Irudayarajan L. Characterization of the defense properties of healthy and diseased coral mucus[J]. Journal of Invertebrate Pathology, 2023, 201: 108001. doi: 10.1016/j.jip.2023.108001
    [62] 蒙林庆, 黄雯, 阳恩广, 等. 高温白化事件可提高涠洲岛澄黄滨珊瑚(Porites lutea)的耐热性[J]. 海洋学报, 2022, 44(8): 87−96. doi: 10.12284/j.issn.0253-4193.2022.8.hyxb202208009

    Meng Linqing, Huang Wen, Yang Enguang, et al. High temperature bleaching events can increase thermal tolerance of Porites lutea in the Weizhou Island[J]. Acta Oceanologica Sinica, 2022, 44(8): 87−96. doi: 10.12284/j.issn.0253-4193.2022.8.hyxb202208009
    [63] Császár N B M, Seneca F O, van Oppen M J H. Variation in antioxidant gene expression in the scleractinian coral Acropora millepora under laboratory thermal stress[J]. Marine Ecology Progress Series, 2009, 392: 93−102. doi: 10.3354/meps08194
    [64] 许昌有, 黄晖, 练健生, 等. 澄黄滨珊瑚ferritin基因部分cDNA序列的获得及分析[J]. 科学能报, 2013, 58(17): 1590−1595. doi: 10.1360/972012-234

    Xu Changyou, Huang Hui, Lian Jiansheng, et al. A partial cDNA sequence of the ferritin gene in Porites lutea[J]. Chinese Science Bulletin, 2013, 58(17): 1590−1595. doi: 10.1360/972012-234
    [65] Liu Zhaoqun, An Mingxun, Geng Xinxing, et al. The scleractinian coral Pocillopora damicornis relies on neuroendocrine regulation to cope with polycyclic aromatic hydrocarbons under heat stress[J]. Environmental Pollution, 2023, 316: 120565. doi: 10.1016/j.envpol.2022.120565
    [66] Rosic N N, Pernice M, Dunn S, et al. Differential regulation by heat stress of novel cytochrome P450 genes from the dinoflagellate symbionts of reef-building corals[J]. Applied and Environmental Microbiology, 2010, 76(9): 2823−2829. doi: 10.1128/AEM.02984-09
    [67] Morgan M B, Edge S E, Snell T W. Profiling differential gene expression of corals along a transect of waters adjacent to the bermuda municipal dump[J]. Marine Pollution Bulletin, 2005, 51(5/7): 524−533. (查阅网上资料, 本条文献与第41条文献重复, 请确认)
    [68] Edge S E, Morgan M B, Gleason D F, et al. Development of a coral cDNA array to examine gene expression profiles in Montastraea faveolata exposed to environmental stress[J]. Marine Pollution Bulletin, 2005, 51(5/7): 507−523.
    [69] Voolstra C R, Schnetzer J, Peshkin L, et al. Effects of temperature on gene expression in embryos of the coral Montastraea faveolata[J]. BMC Genomics, 2009, 10(1): 627. doi: 10.1186/1471-2164-10-627
    [70] Ainsworth T D, Wasmund K, Ukani L, et al. Defining the tipping point. A complex cellular life/death balance in corals in response to stress[J]. Scientific Reports, 2011, 1(1): 160. doi: 10.1038/srep00160
    [71] Pernice M, Dunn S R, Miard T, et al. Regulation of apoptotic mediators reveals dynamic responses to thermal stress in the reef building coral Acropora millepora[J]. PLoS One, 2011, 6(1): e16095. doi: 10.1371/journal.pone.0016095
    [72] Yu Qiuyu, He Chunlong, Wang Yi, et al. The differential physiological responses to heat stress in the scleractinian coral Pocillopora damicornis are affected by its energy reserve[J]. Marine Environmental Research, 2025, 204: 106966. doi: 10.1016/j.marenvres.2025.106966
    [73] Shrestha S, Tung J, Grinshpon R D, et al. Caspases from scleractinian coral show unique regulatory features[J]. Journal of Biological Chemistry, 2020, 295(43): 14578−14591. doi: 10.1074/jbc.RA120.014345
    [74] Jiang Shuai, Zhou Zhi, Sun Yuanyuan, et al. Coral gasdermin triggers pyroptosis[J]. Science Immunology, 2020, 5(54): eabd2591. doi: 10.1126/sciimmunol.abd2591
    [75] Miller D J, McMillan J, Miles A, et al. Nucleotide sequence of the histone H3-encoding gene from the scleractinian coral Acropora formosa (cnidaria: scleractinia)[J]. Gene, 1990, 93(2): 319−320. doi: 10.1016/0378-1119(90)90243-K
    [76] Voolstra C R, Schnetzer J, Peshkin L, et al. Effects of temperature on gene expression in embryos of the coral Montastraea faveolata[J]. BMC Genomics, 2009, 10(1): 627. (查阅网上资料, 本条文献与第69条文献重复, 请确认)
    [77] Watanabe T, Nishida M, Watanabe K, et al. Polymorphism in nucleotide sequence of mitochondrial intergenic region in scleractinian coral (Galaxea fascicularis)[J]. Marine Biotechnology, 2005, 7(1): 33−39. doi: 10.1007/s10126-004-3200-4
    [78] Rocker M M, Noonan S, Humphrey C, et al. Expression of calcification and metabolism-related genes in response to elevated pCO2 and temperature in the reef-building coral Acropora millepora[J]. Marine Genomics, 2015, 24: 313−318. doi: 10.1016/j.margen.2015.08.001
    [79] Kenkel C D, Meyer E, Matz M V. Gene expression under chronic heat stress in populations of the mustard hill coral (Porites astreoides) from different thermal environments[J]. Molecular Ecology, 2013, 22(16): 4322−4334. doi: 10.1111/mec.12390
    [80] Zhang Man, Huang Shan, Luo Li, et al. Insights into the molecular mechanisms underlying the different heat tolerance of the scleractinian coral Pavona decussata[J]. Coral Reefs, 2024, 43(2): 429−442. doi: 10.1007/s00338-024-02478-9
    [81] Rädecker N, Pogoreutz C, Gegner H M, et al. Heat stress destabilizes symbiotic nutrient cycling in corals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(5): e2022653118.
    [82] Sun Fulin, Yang Hongqiang, Zhang Xiyang, et al. Significant response of coral-associated bacteria and their carbohydrate-active enzymes diversity to coral bleaching[J]. Marine Environmental Research, 2024, 201: 106694. doi: 10.1016/j.marenvres.2024.106694
    [83] Sun Fulin, Yang Hongqiang, Zhang Xiyang, et al. Metabolic and metatranscriptional characteristics of corals bleaching induced by the most severe marine heatwaves in the South China Sea[J]. Science of the Total Environment, 2023, 858: 160019. (查阅网上资料, 本条文献与第7条文献重复, 请确认)
    [84] 沈城, 刘楚吾, 刘丽. 温度胁迫及恢复初期稀杯盔形珊瑚共生虫黄藻Hsp70Hsp90psaApsbA基因表达分析[J]. 热带海洋学报, 2016, 35(3): 72−78. doi: 10.11978/2015056

    Shen Cheng, Liu Chuwu, Liu Li. Heat-induced stress genes Hsp70, Hsp90 and chloroplast psaA and psbA gene expressions of Galaxea astreata endosymbiotic zooxanthella revealing the ability of tolerance and recovery[J]. Journal of Tropical Oceanography, 2016, 35(3): 72−78. doi: 10.11978/2015056
    [85] Gong Sanqaing, Liang Jiayuan, Xu Lijia, et al. Blue light increases thermal bleaching tolerance of coral via remodeling host-Symbiodiniaceae symbiosis[J]. Ecological Indicators, 2023, 155: 111020. doi: 10.1016/j.ecolind.2023.111020
    [86] Roth M S, Latz M I, Goericke R, et al. Green fluorescent protein regulation in the coral Acropora yongei during photoacclimation[J]. Journal of Experimental Biology, 2010, 213(21): 3644−3655. doi: 10.1242/jeb.040881
    [87] Smith-Keune C, Dove S. Gene expression of a green fluorescent protein homolog as a host-specific biomarker of heat stress within a reef-building coral[J]. Marine Biotechnology, 2008, 10(2): 166−180. doi: 10.1007/s10126-007-9049-6
    [88] Dizon E G S, Da-Anoy J P, Roth M S, et al. Fluorescent protein expression in temperature tolerant and susceptible reef-building corals[J]. Journal of the Marine Biological Association of the United Kingdom, 2021, 101(1): 71−80. doi: 10.1017/S0025315421000059
    [89] 黄文靖. 角孔珊瑚属3种珊瑚的物种鉴定及其进化关系研究[D]. 湛江: 广东海洋大学, 2023.

    Huang Wenjing. A morphology classification and phylogenetic analysis of three species of the scleractinian coral genus Goniopora[D]. Zhanjiang: Guangdong Ocean University, 2023.
    [90] Huang Yuanjia, Yuan Jigui, Zhang Yanping, et al. Molecular cloning and characterization of calmodulin-like protein CaLP from the Scleractinian coral Galaxea astreata[J]. Cell Stress and Chaperones, 2018, 23(6): 1329−1335. doi: 10.1007/s12192-018-0907-0
    [91] 黄元佳. 稀杯盔形珊瑚钙调素类似蛋白、钙网蛋白、碳酸酐酶基因的克隆及表达分析[D]. 湛江: 广东海洋大学, 2019.

    Huang Yuanjia. Cloning and expression analysis of calmodulin-like protein、calreticulin and carbonic anhydrase in Galaxea astreata[D]. Zhanjiang: Guangdong Ocean University, 2019.
    [92] Chiou C Y, Chen I P, Chen C, et al. Analysis of Acropora muricata calmodulin (CaM) indicates that scleractinian corals possess the ancestral exon/intron organization of the eumetazoan CaM gene[J]. Journal of Molecular Evolution, 2008, 66(4): 317−324. doi: 10.1007/s00239-008-9084-6
    [93] Huang Yuanjia, Zhang Yanping, Peng Huipai, et al. Cloning and functional analysis of the calreticulin gene from the scleractinian coral Galaxea astreata[J]. Acta Oceanologica Sinica, 2020, 39(6): 58−64. doi: 10.1007/s13131-020-1590-4
    [94] Weston A J, Dunlap W C, Beltran V H, et al. Proteomics links the redox state to calcium signaling during bleaching of the scleractinian coral Acropora microphthalma on exposure to high solar irradiance and thermal stress[J]. Molecular & Cellular Proteomics, 2015, 14(3): 585−595.
    [95] Reyes-Bermudez A, DeSalvo M K, Voolstra C R, et al. Gene expression microarray analysis encompassing metamorphosis and the onset of calcification in the scleractinian coral Montastraea faveolata[J]. Marine Genomics, 2009, 2(3/4): 149−159.
    [96] Tian Peng, Niu Wentao. The complete mitochondrial genome of the Acropora pruinosa[J]. Mitochondrial DNA Part B, 2017, 2(2): 652−653. doi: 10.1080/23802359.2017.1375882
    [97] Vollmer S V, Selwyn J D, Despard B A, et al. Genomic signatures of disease resistance in endangered staghorn corals[J]. Science, 2023, 381(6665): 1451−1454. doi: 10.1126/science.adi3601
    [98] Kenkel C D, Sheridan C, Leal M C, et al. Diagnostic gene expression biomarkers of coral thermal stress[J]. Molecular Ecology Resources, 2014, 14(4): 667−678. doi: 10.1111/1755-0998.12218
    [99] Yohann Michau C M M D, Diniz V A M A. Translational research and innovation in human and health science[J]. Annals of Medicine, 2018, 50(S1): S10−S170. (查阅网上资料, 未找到对应的作者信息, 请确认)
    [100] 马金柱, 王北艳, 崔玉东, 等. NLRs蛋白家族的研究进展[J]. 中国免疫学杂志, 2011, 27(3): 281−284.

    Ma Jinzhu, Wang Beiyan, Chui Yudong, et al. Research progress on the NLRs protein family[J]. Chinese Journal of Immunology, 2011, 27(3): 281−284. (查阅网上资料, 未找到对应的英文翻译, 请确认)
    [101] Williams L M, Fuess L E, Brennan J J, et al. A conserved toll-like receptor-to-NF-κB signaling pathway in the endangered coral Orbicella faveolata[J]. Developmental & Comparative Immunology, 2018, 79: 128−136.
    [102] Dimos B A, Butler C C, Ricci C A, et al. Responding to threats both foreign and domestic: NOD-like receptors in corals[J]. Integrative and Comparative Biology, 2019, 59(4): 819−829. doi: 10.1093/icb/icz111
    [103] Brudner M, Karpel M, Lear C, et al. Lectin-dependent enhancement of ebola virus infection via soluble and transmembrane C-type lectin receptors[J]. PLoS One, 2013, 8(4): e60838. doi: 10.1371/journal.pone.0060838
    [104] Zhou Zhi, Zhao Shuimiao, Ni Junyi, et al. Effects of environmental factors on C-type lectin recognition to zooxanthellae in the stony coral Pocillopora damicornis[J]. Fish & Shellfish Immunology, 2018, 79: 228−233.
    [105] Souter P, Bay L K, Andreakis N, et al. A multilocus, temperature stress-related gene expression profile assay in Acropora millepora, a dominant reef-building coral[J]. Molecular Ecology Resources, 2011, 11(2): 328−334. doi: 10.1111/j.1755-0998.2010.02923.x
    [106] Rosic N N, Pernice M, Dove S, et al. Gene expression profiles of cytosolic heat shock proteins Hsp70 and Hsp90 from symbiotic dinoflagellates in response to thermal stress: possible implications for coral bleaching[J]. Cell Stress and Chaperones, 2011, 16(1): 69−80. doi: 10.1007/s12192-010-0222-x
    [107] Meyer E, Aglyamova G V, Matz M V. Profiling gene expression responses of coral larvae (Acropora millepora) to elevated temperature and settlement inducers using a novel RNA-seq procedure[J]. Molecular Ecology, 2011, 20(17): 3599−3616.
    [108] Chowdhury S, White R, Ewell A, et al. Abstract 2204 subcellular expression of heat-shock protein in the coral holobiont[J]. Journal of Biological Chemistry, 2024, 300(3): 107064. doi: 10.1016/j.jbc.2024.107064
    [109] Llorente L, Aquilino M, Herrero Ó, et al. Characterization and expression of heat shock and immune genes in natural populations of Prodiamesa olivacea (Diptera) exposed to thermal stress[J]. Ecotoxicology and Environmental Safety, 2023, 263: 115359. doi: 10.1016/j.ecoenv.2023.115359
    [110] Cleves P A, Krediet C J, Lehnert E M, et al. Insights into coral bleaching under heat stress from analysis of gene expression in a sea anemone model system[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(46): 28906−28917.
    [111] Tkáčová J, Angelovičová M. Heat shock proteins (HSPs): a review[J]. Lucrări Științifice Zootehnie şi Biotehnologii, 2012, 45(1): 349−353.
    [112] Rodriguez-Lanetty M, Harii S, Hoegh-Guldberg O. Early molecular responses of coral larvae to hyperthermal stress[J]. Molecular Ecology, 2009, 18(24): 5101−5114. doi: 10.1111/j.1365-294X.2009.04419.x
    [113] 陈曦. 6种模式生物热休克蛋白70家族的进化分析[J]. 安徽农业科学, 2011, 39(2): 701−702. doi: 10.3969/j.issn.0517-6611.2011.02.028

    Chen Xi. Evolutionary analysis on heat shock protein 70 family from ascidian and other 5 model organisms[J]. Journal of Anhui Agricultural Sciences, 2011, 39(2): 701−702. doi: 10.3969/j.issn.0517-6611.2011.02.028
    [114] Beere H M, Green D R. Stress management – heat shock protein-70 and the regulation of apoptosis[J]. Trends in Cell Biology, 2001, 11(1): 6−10. doi: 10.1016/S0962-8924(00)01874-2
    [115] Arya R, Mallik M, Lakhotia S C. Heat shock genes - integrating cell survival and death[J]. Journal of Biosciences, 2007, 32(3): 595−610. doi: 10.1007/s12038-007-0059-3
    [116] Trautinger F, Kindås-Mügge I, Knobler R M, et al. Stress proteins in the cellular response to ultraviolet radiation[J]. Journal of Photochemistry and Photobiology B: Biology, 1996, 35(3): 141−148. doi: 10.1016/S1011-1344(96)07344-7
    [117] Prodromou C. Mechanisms of Hsp90 regulation[J]. Biochemical Journal, 2016, 473(16): 2439−2452. doi: 10.1042/BCJ20160005
    [118] Mogk A, Bukau B, Kampinga H H. Cellular handling of protein aggregates by disaggregation machines[J]. Molecular Cell, 2018, 69(2): 214−226. doi: 10.1016/j.molcel.2018.01.004
    [119] Okuda M, Niwa T, Taguchi H. Single-molecule analyses of the dynamics of heat shock protein 104 (Hsp104) and protein aggregates[J]. Journal of Biological Chemistry, 2015, 290(12): 7833−7840. doi: 10.1074/jbc.M114.620427
    [120] Motone K, Takagi T, Aburaya S, et al. Protection of coral larvae from thermally induced oxidative stress by redox nanoparticles[J]. Marine Biotechnology, 2018, 20(4): 542−548. doi: 10.1007/s10126-018-9825-5
    [121] Gong Sanqiang, Liang Jiayuan, Xu Lijia, et al. Blue light increases thermal bleaching tolerance of coral via remodeling host-Symbiodiniaceae symbiosis[J]. Ecological Indicators, 2023, 155: 111020. (查阅网上资料, 本条文献与第85条文献重复, 请确认)
    [122] 王兰英, 韩丹丹, 邓恒, 等. 蜂巢珊瑚共生真菌的分离、鉴定及其抗氧化活性[J]. 西北农业学报, 2019, 28(3): 459−465. doi: 10.7606/j.issn.1004-1389.2019.03.019

    Wang Lanying, Han Dandan, Deng Heng, et al. Isolation, identification and antioxidant activity of epiphytic fungi from Favia speciosa[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2019, 28(3): 459−465. doi: 10.7606/j.issn.1004-1389.2019.03.019
    [123] Perez S, Weis V. Nitric oxide and cnidarian bleaching: an eviction notice mediates breakdown of a symbiosis[J]. Journal of Experimental Biology, 2006, 209(14): 2804−2810. doi: 10.1242/jeb.02309
    [124] Hoegh-Guldberg O. Climate change, coral bleaching and the future of the world's coral reefs[J]. Marine and Freshwater Research, 1999, 50(8): 839−866.
    [125] Levin R A, Beltran V H, Hill R, et al. Sex, scavengers, and chaperones: transcriptome secrets of divergent Symbiodinium thermal tolerances[J]. Molecular Biology and Evolution, 2016, 33(9): 2201−2215. doi: 10.1093/molbev/msw119
    [126] Sudarev V V, Gette M S, Bazhenov S V, et al. Ferritin-based fusion protein shows octameric deadlock state of self-assembly[J]. Biochemical and Biophysical Research Communications, 2024, 690: 149276. doi: 10.1016/j.bbrc.2023.149276
    [127] Pankov K V, McArthur A G, Gold D A, et al. The cytochrome P450 (CYP) superfamily in cnidarians[J]. Scientific Reports, 2021, 11(1): 9834. doi: 10.1038/s41598-021-88700-y
    [128] Hatefi Y. The mitochondrial electron transport and oxidative phosphorylation system[J]. Annual Review of Biochemistry, 1985, 54: 1015−1069. doi: 10.1146/annurev.bi.54.070185.005055
    [129] Hegde R. The 24-kDa subunit of the bovine mitochondrial NADH: ubiquinone oxidoreductase is a G protein[J]. Biochemical and Biophysical Research Communications, 1998, 244(3): 620−629. doi: 10.1006/bbrc.1998.8304
    [130] Ainsworth T D, Hoegh-Guldberg O, Heron S F, et al. Early cellular changes are indicators of pre-bleaching thermal stress in the coral host[J]. Journal of Experimental Marine Biology and Ecology, 2008, 364(2): 63−71. doi: 10.1016/j.jembe.2008.06.032
    [131] Yu Xiaopeng, Huang Bo, Zhou Zhi, et al. Involvement of caspase3 in the acute stress response to high temperature and elevated ammonium in stony coral Pocillopora damicornis[J]. Gene, 2017, 637: 108−114. doi: 10.1016/j.gene.2017.09.040
    [132] Shi Jianjin, Gao Wenqing, Shao Feng. Pyroptosis: gasdermin-mediated programmed necrotic cell death[J]. Trends in Biochemical Sciences, 2017, 42(4): 245−254. doi: 10.1016/j.tibs.2016.10.004
    [133] Kenkel C D, Sheridan C, Leal M C, et al. Diagnostic gene expression biomarkers of coral thermal stress[J]. Molecular Ecology Resources, 2014, 14(4): 667−678. (查阅网上资料, 本条文献与第98条文献重复, 请确认)
    [134] Jiang Lei, Sun Youfang, Zhou Guowei, et al. Ocean acidification elicits differential bleaching and gene expression patterns in larval reef coral Pocillopora damicornis under heat stress[J]. Science of the Total Environment, 2022, 842: 156851. doi: 10.1016/j.scitotenv.2022.156851
    [135] Jiang Lei, Sun Youfang, Zhou Guowei, et al. Ocean acidification elicits differential bleaching and gene expression patterns in larval reef coral Pocillopora damicornis under heat stress[J]. Science of the Total Environment, 2022, 842: 156851. (查阅网上资料, 本条文献与第134条文献重复, 请确认)
    [136] 安华. 两株异养硝化菌的脱氮性能及乙醛酸循环的研究[D]. 太原: 太原理工大学, 2014.

    An Hua. Study on nitrification efficiency and glyoxylate cycle by heterotrophic nitrication bacteria[D]. Taiyuan: Taiyuan University of Technology, 2014.
    [137] Coleman D N, Totakul P, Onjai-uea N, et al. Rumen-protected methionine during heat stress alters mTOR, insulin signaling, and 1-carbon metabolism protein abundance in liver, and whole-blood transsulfuration pathway genes in holstein cows[J]. Journal of Dairy Science, 2022, 105(9): 7787−7804. doi: 10.3168/jds.2021-21379
    [138] Murray B, Peng H, Barbier-Torres L, et al. Methionine adenosyltransferase α1 is targeted to the mitochondrial matrix and interacts with cytochrome P450 2E1 to lower its expression[J]. Hepatology, 2019, 70(6): 2018−2034. doi: 10.1002/hep.30762
    [139] Zhang Jingjing, Huang Zanhui, Li Yuanchao, et al. Synergistic/antagonistic effects of nitrate/ammonium enrichment on fatty acid biosynthesis and translocation in coral under heat stress[J]. Science of the Total Environment, 2023, 876: 162834. doi: 10.1016/j.scitotenv.2023.162834
    [140] 胡文心, 杨杰. 糖异生相关通路的研究进展及中药的改善作用[J]. 云南中医中药杂志, 2023, 44(12): 83−87. doi: 10.3969/j.issn.1007-2349.2023.12.021

    Hu Wenxin, Yang Jie. Research advances in gluconeogenesis-related pathways and the regulatory effects of traditional Chinese medicine[J]. Yunnan Journal of Traditional Chinese Medicine and Materia Medica, 2023, 44(12): 83−87. doi: 10.3969/j.issn.1007-2349.2023.12.021
    [141] Jitrapakdee S, Wallace J C. Structure, function and regulation of pyruvate carboxylase[J]. Biochemical Journal, 1999, 340(1): 1−16. doi: 10.1042/bj3400001
    [142] Meister A. Metabolism and function of glutathione: an overview[J]. Biochemical Society Transactions, 1982, 10(2): 78−79. doi: 10.1042/bst0100078
    [143] Su Yilu, Zhou Zhi, Yu Xiaopeng. Possible roles of glutamine synthetase in responding to environmental changes in a scleractinian coral[J]. Molecular Biology Reports, 2018, 45(6): 2115−2124. doi: 10.1007/s11033-018-4369-3
    [144] 俞小鹏. Caspase3和谷氨酰胺合成酶在鹿角杯形珊瑚环境应激中的功能研究[D]. 海口: 海南大学, 2018.

    Yu Xiaopeng. Functional study of Caspase3 and glutamine synthetase in the environmental stress of Pocillopora damicornis[D]. Haikou: Hainan University, 2018.
    [145] Chen Jian, Yu Kefu, Yu Xiaopeng, et al. Transcriptomic and physiological analyses reveal the toxic effects of inorganic filters (nZnO and nTiO2) on scleractinian coral Galaxea fascicularis[J]. Environmental Research, 2025, 267: 120663. doi: 10.1016/j.envres.2024.120663
    [146] Mühlenbruch M, Grossart H, Eigemann F, et al. Mini-review: phytoplankton-derived polysaccharides in the marine environment and their interactions with heterotrophic bacteria[J]. Environmental Microbiology, 2018, 20(8): 2671−2685. doi: 10.1111/1462-2920.14302
    [147] Upreti R K, Kumar M, Shankar V. Bacterial glycoproteins: functions, biosynthesis and applications[J]. Proteomics, 2003, 3(4): 363−379. doi: 10.1002/pmic.200390052
    [148] Stewart R D, Auffret M D, Warr A, et al. Assembly of 913 microbial genomes from metagenomic sequencing of the cow rumen[J]. Nature Communications, 2018, 9(1): 870. doi: 10.1038/s41467-018-03317-6
    [149] 佘大为, 张海波, 王月, 等. 坛紫菜叶绿体psaA基因片段的序列分析[J]. 水产科学, 2007, 26(5): 289−291. doi: 10.3969/j.issn.1003-1111.2007.05.011

    She Dawei, Zhang Haibo, Wang Yue, et al. Sequence analyses of chloroplastic psaA gene fragment from Porphyra haitanensis[J]. Fisheries Science, 2007, 26(5): 289−291. doi: 10.3969/j.issn.1003-1111.2007.05.011
    [150] 汤紫依, 吴倩, 田盛野, 等. 华顶杜鹃叶绿体psbA-trnH序列的克隆与分析[J]. 台州学院学报, 2022, 44(3): 81−86,92.

    Tang Ziyi, Wu Qian, Tian Shengye, et al. Isolation and sequence analysis of chloroplast psbA-trnH from Rhododendron huadingense[J]. Journal of Taizhou University, 2022, 44(3): 81−86,92.
    [151] Shinzato C, Shoguchi E, Tanaka M, et al. Fluorescent protein candidate genes in the coral Acropora digitifera genome[J]. Zoological Science, 2012, 29(4): 260−264. doi: 10.2108/zsj.29.260
    [152] Yuyama I, Harii S, Hidaka M. Algal symbiont type affects gene expression in juveniles of the coral Acropora tenuis exposed to thermal stress[J]. Marine Environmental Research, 2012, 76: 41−47. doi: 10.1016/j.marenvres.2011.09.004
    [153] 袁翔城, 梁宇娴, 宋严, 等. CO2升高对风信子鹿角珊瑚(Acropora hyacinthus)钙化速率和基因表达的影响[J]. 热带海洋学报, 2024, 43(3): 40−48. doi: 10.11978/2022182

    Yuan Xiangcheng, Liang Yuxian, Song Yan, et al. Effects of ocean acidification on the calcification and gene expression in coral Acropora hyacinthus[J]. Journal of Tropical Oceanography, 2024, 43(3): 40−48. doi: 10.11978/2022182
    [154] 徐菲菲, 刘秀华. 钙网蛋白的生理及病理生理学作用[J]. 生理科学进展, 2006, 37(3): 216−220. doi: 10.3321/j.issn:0559-7765.2006.03.005

    Xu Feifei, Liu Xiuhua. Research on physiological and pathophysiological functions of calreticulin[J]. Progress in Physiological Sciences, 2006, 37(3): 216−220. doi: 10.3321/j.issn:0559-7765.2006.03.005
    [155] Saito Y, Ihara Y, Leach M R, et al. Calreticulin functions in vitro as a molecular chaperone for both glycosylated and non-glycosylated proteins[J]. The EMBO Journal, 1999, 18(23): 6718−6729. doi: 10.1093/emboj/18.23.6718
    [156] Conway E M, Liu Lili, Nowakowski B, et al. Heat shock-sensitive expression of calreticulin: in vitro and in vivo up-regulation[J]. Journal of Biological Chemistry, 1995, 270(28): 17011−17016. doi: 10.1074/jbc.270.28.17011
    [157] Sunagawa S, DeSalvo M K, Voolstra C R, et al. Identification and gene expression analysis of a taxonomically restricted cysteine-rich protein family in reef-building corals[J]. PLoS One, 2009, 4(3): e4865. doi: 10.1371/journal.pone.0004865
    [158] Umasuthan N, Elvitigala D A S, Saranya Revathy K, et al. Identification and in silico analysis of a novel troponin C like gene from Ruditapes philippinarum (Bivalvia: Veneridae) and its transcriptional response for calcium challenge[J]. Gene, 2013, 519(1): 194−201. doi: 10.1016/j.gene.2012.10.025
    [159] Liang Zheyong, Li Wenjie, Liu Jie, et al. Simvastatin suppresses the DNA replication licensing factor MCM7 and inhibits the growth of tamoxifen-resistant breast cancer cells[J]. Scientific Reports, 2017, 7(1): 41776. doi: 10.1038/srep41776
    [160] Maor-Landaw K, Levy O. Gene expression profiles during short-term heat stress; branching vs. massive Scleractinian corals of the red sea[J]. PeerJ, 2016, 4: e1814. doi: 10.7717/peerj.1814
    [161] Cyr D M, Langer T, Douglas M G. DnaJ-like proteins: molecular chaperones and specific regulators of Hsp70[J]. Trends in Biochemical Sciences, 1994, 19(4): 176−181. doi: 10.1016/0968-0004(94)90281-X
    [162] 钟芳芳, 江海燕, 张俊平. 核糖体蛋白及其在疾病中的作用[J]. 药学实践与服务, 2023, 41(9): 519−523,556. doi: 10.12206/j.issn.2097-2024.202212006

    Zhong Fangfang, Jiang Haiyan, Zhang Junping. Research progress on ribosomal proteins and their functions in diseases[J]. Journal of Pharmaceutical Practice and Service, 2023, 41(9): 519−523,556. doi: 10.12206/j.issn.2097-2024.202212006
    [163] 袁吉贵. 稀杯盔形珊瑚Gagalaxin基因的功能分析[D]. 湛江: 广东海洋大学, 2019.

    Yuan Jigui. Analysis on Gagalaxin function of Galaxea astreata[D]. Zhanjiang: Guangdong Ocean University, 2019.
    [164] 张静, 彭靖淇. 微小RNA-K1-5p调控G1/S期相关基因的表达影响内皮细胞周期[J]. 安徽医药, 2023, 27(1): 108−112. doi: 10.3969/j.issn.1009-6469.2023.01.024

    Zhang Jing, Peng Jingqi. Effect of miR-K1-5p on the cycle of endothelial cells by regulating G1/S phase related gene expressions[J]. Anhui Medical and Pharmaceutical Journal, 2023, 27(1): 108−112. doi: 10.3969/j.issn.1009-6469.2023.01.024
    [165] Khaitlina S, Fitz H, Hinssen H. The interaction of gelsolin with tropomyosin modulates actin dynamics[J]. The FEBS Journal, 2013, 280(18): 4600−4611. doi: 10.1111/febs.12431
    [166] 孙绽, 王筱寅, 应奕雯, 等. 泛素特异性蛋白酶24的研究进展[J]. 生命的化学, 2020, 40(10): 1792−1799.

    Sun Zhan, Wang Xiaoyin, Ying Yiwen, et al. Recent advances in the studies of ubiquitin-specific protease 24[J]. Chemistry of Life, 2020, 40(10): 1792−1799.
    [167] Lachs L, Donner S D, Mumby P J, et al. Emergent increase in coral thermal tolerance reduces mass bleaching under climate change[J]. Nature Communications, 2023, 14(1): 4939. (查阅网上资料, 本条文献与第21条文献重复, 请确认)
    [168] Middlebrook R, Hoegh-Guldberg O, Leggat W. The effect of thermal history on the susceptibility of reef-building corals to thermal stress[J]. Journal of Experimental Biology, 2008, 211(7): 1050−1056. doi: 10.1242/jeb.013284
    [169] Bay R A, Palumbi S R. Rapid acclimation ability mediated by transcriptome changes in reef-building corals[J]. Genome Biology and Evolution, 2015, 7(6): 1602−1612. doi: 10.1093/gbe/evv085
    [170] Castillo K D, Helmuth B S T. Influence of thermal history on the response of Montastraea annularis to short-term temperature exposure[J]. Marine Biology, 2005, 148(2): 261−270. doi: 10.1007/s00227-005-0046-x
    [171] Yu Xiaopeng, Yu Kefu, Chen Biao, et al. Metabolic and immune costs balance during natural acclimation of corals in fluctuating environments[J]. Marine Environmental Research, 2024, 193: 106284. doi: 10.1016/j.marenvres.2023.106284
    [172] Evensen N R, Fine M, Perna G, et al. Remarkably high and consistent tolerance of a red sea coral to acute and chronic thermal stress exposures[J]. Limnology and Oceanography, 2021, 66(5): 1718−1729. doi: 10.1002/lno.11715
    [173] Takahashi S, Yoshioka-Nishimura M, Nanba D, et al. Thermal acclimation of the symbiotic alga Symbiodinium spp. Alleviates photobleaching under heat stress[J]. Plant Physiology, 2013, 161(1): 477−485.
    [174] 刘旭, 黄雯, 俞小鹏, 等. 适度热胁迫对造礁石珊瑚热耐受性影响的研究[J]. 海洋湖沼通报, 2022, 44(1): 99−105.

    Liu Xu, Huang Wen, Yu Xiaopeng, et al. Studies on the effect of moderate heat stress on the heat tolerance of scleractinian coral[J]. Transactions of Oceanology and Limnology, 2022, 44(1): 99−105.
    [175] 刘旭. 造礁石珊瑚对温度胁迫的响应机制研究[D]. 南宁: 广西大学, 2020.

    Liu Xu. Responsive mechanism of reef-building coral rocks to temperature stress[D]. Nanning: Guangxi University, 2020.
    [176] 俞小鹏. 南海北部造礁珊瑚对高温胁迫的响应及适应性研究[D]. 南宁: 广西大学, 2022.

    Yu Xiaopeng. Response and adaptation of scleractinian coral to high temperature stress in the northern South China Sea[D]. Nanning: Guangxi University, 2022.
    [177] Gibbin E M, Krueger T, Putnam H M, et al. Short-term thermal acclimation modifies the metabolic condition of the coral holobiont[J]. Frontiers in Marine Science, 2018, 5: 10. doi: 10.3389/fmars.2018.00010
    [178] Smith E G, Hazzouri K M, Choi J Y, et al. Signatures of selection underpinning rapid coral adaptation to the world's warmest reefs[J]. Science Advances, 2022, 8(2): eabl7287. doi: 10.1126/sciadv.abl7287
    [179] Kovalchuk A, Driessen A J M. Phylogenetic analysis of fungal ABC transporters[J]. BMC Genomics, 2010, 11(1): 177. doi: 10.1186/1471-2164-11-177
    [180] Howells E J, Abrego D, Liew Y J, et al. Enhancing the heat tolerance of reef-building corals to future warming[J]. Science Advances, 2021, 7(34): eabg6070. doi: 10.1126/sciadv.abg6070
    [181] Rivera H E, Tramonte C A, Samaroo J, et al. Heat challenge elicits stronger physiological and gene expression responses than starvation in symbiotic Oculina arbuscula[J]. Journal of Heredity, 2023, 114(4): 312−325. doi: 10.1093/jhered/esac068
    [182] Nielsen D A, Petrou K, Gates R D. Coral bleaching from a single cell perspective[J]. The ISME Journal, 2018, 12(6): 1558−1567. doi: 10.1038/s41396-018-0080-6
    [183] Bay R A, Guerrero L. Can genomes predict coral bleaching?[J]. Science, 2020, 369(6501): 249−250. doi: 10.1126/science.abc9342
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  10
  • HTML全文浏览量:  6
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-12
  • 修回日期:  2025-05-07
  • 网络出版日期:  2025-05-30

目录

    /

    返回文章
    返回