Spatial and temporal distribution characteristics of phytoplankton community and its environmental impact factors in Liuqing River Bay*
-
摘要: 近海河口生态系统是河流与海洋交汇处形成的独特生态系统,具有较高的初级生产力,能为众多生物提供食物和栖息地,在维持生态系统结构稳定方面发挥着重要作用。为了探究流清河湾浮游植物群落的时空动态及其环境影响因素,本研究于2023年冬季(3月),春季(5月),夏季(8月)和秋季(10月)对流清河湾的7个采样站点,开展了4个航次的调查研究。结果表明,四个航次共鉴定出浮游植物3门56属97种,其中,浮游植物群落结构主要由硅藻门和甲藻门组成。流清河湾浮游植物细胞丰度存在着明显的时空动态变化特征,从时间维度来看,四个季节的浮游植物的平均丰度由高到低依次为冬季、秋季、夏季和春季;在空间分布方面,流清河湾浮游植物丰度体现出季节性的空间分布差异。春、秋、冬季高丰度区集中于东北近岸海域,主要受陆源输入驱动。低丰度区持续分布于西北海域,主要与湍流混合相关,整体空间格局表现为近岸富集、外海递减的特征。优势种主要有硅藻门的奇异棍形藻,蛇目圆筛藻,并基角毛藻,旋链角毛藻,星脐圆筛藻,格氏圆筛藻和甲藻门的大角角藻,三角角藻。夏季和秋季的生物多样性显著高于春季和冬季。冗余分析结果表明,盐度、溶解无机氮(DIN)和溶解无机磷(DIP)是影响浮游植物群落结构变化的关键环境因子。Abstract: The coastal estuarine ecosystem is a unique ecosystem formed at the confluence of rivers and oceans. It has high primary productivity, can provide food and habitat for many organisms, and plays an important role in maintaining the stability of ecosystem structure. In order to explore the temporal and spatial dynamics of phytoplankton community and its environmental impact factors in Liuqing River Bay, four cruises were carried out at seven sampling sites in Liuqing River Bay in winter (March), spring (May), summer (August) and autumn (October) of 2023. The results showed that a total of 97 species of phytoplankton belonging to 56 genera and 3 phyla were identified in the four cruises. The phytoplankton community structure was mainly composed of diatoms and dinoflagellates. The cell abundance of phytoplankton in Liuqing River Bay has obvious temporal and spatial dynamic changes. From the time dimension, the average abundance of phytoplankton in the four seasons from high to low is winter, autumn, summer and spring.In terms of spatial distribution, the phytoplankton abundance in Liuqing Bay reflects seasonal spatial distribution differences. The high abundance areas in spring, autumn and winter are concentrated in the northeast coastal waters, which are mainly driven by terrestrial input. The low abundance area is continuously distributed in the northwest sea area, which is mainly related to turbulent mixing. The overall spatial pattern is characterized by near-shore enrichment and offshore decline. The dominant species mainly include Cladophora in Bacillariophyta, Coscinodiscus in Ophiales, Chaetoceros capillipes, Chaetoceros spiralis, Coscinodiscus astromboides, Coscinodiscus grijsii and Chaetoceros capillipes, Chaetoceros tricornis in Pyrrophyta. The biodiversity in summer and autumn was significantly higher than that in spring and winter. The results of redundancy analysis showed that salinity, DIN (dissolved inorganic nitrogen) and DIP (dissolved inorganic phosphorus) were the key environmental factors affecting the changes of phytoplankton community structure.
-
Key words:
- Liuqing River Bay /
- phytoplankton /
- community structure /
- environmental factors /
- redundancy analysis
-
图 2 流清河湾2023年春、夏、秋、冬季各项水环境参数的变化(A)温度;(B)盐度;(C)溶解氧;(D)pH;(E)Chl-a;(F)溶解无机氮;(G)磷酸盐;(H)氮磷比;连接线:中位数连接线
Fig. 2 Changes of water environmental parameters in Liuqing River Bay in spring, summer, autumn and winter of 2023(A) Temperature;(B)Salinity;(C)DO;(D)pH;(E)Chl-a;(F)Dissolved inorganic nitrogen;(G)Phosphate;(H)N/P ratio;Connection line : Median connection line
图 4 2023年流清河湾浮游植物丰度的空间分布变化(a)、(b)、(c)、(d)分别表示春季、夏季、秋季和冬季流清河湾浮游植物丰度的空间分布图;白点表示站位
Fig. 4 Spatial distribution of phytoplankton abundance in Liuqing River Bay in 2023 ( a ), ( b ), ( c ) and ( d ) represent the spatial distribution of phytoplankton abundance in Liuqing River Bay in spring, summer, autumn and winter, respectively;White dots represent the station position
图 7 流清河湾主要优势种丰度和浮游植物的总碳生物量与环境因子之间的RDA排序图
(a)、(b)、(c)、(d)分别表示春季、夏季、秋季和冬季流清河湾主要优势种丰度和浮游植物的总碳生物量与环境因子之间的RDA排序图;A:奇异棍形藻;B:弯顶角藻;C:中心圆筛藻;D:大角角藻;E:三角角藻;F:总碳生物量;G:并基角毛藻;H:窄隙角毛藻;I:旋链角毛藻;J:扁面角毛藻;K:格氏圆筛藻;L:冕孢角毛藻;M:拟旋链角毛藻;N:蛇目圆筛藻;O:夜光藻;DIN:溶解无机氮;DIP:溶解无机磷;DO:溶解氧
Fig. 7 The RDA ordination diagram between the abundance of main dominant species and the total carbon biomass of phytoplankton and environmental factors in Liuqing River Bay
(a)、(b)、(c)、(d)represent the RDA ordination diagram between the abundance of the main dominant species and the total carbon biomass of phytoplankton and environmental factors in Liuqing River Bay in spring, summer, autumn and winter, respectively;A:Rodularia bizarre;B:Chaetoceros curvatus;C:Coscinodiscus centralis;D:Chaetoceros gracilis;E:Chaetoceros triangularis;F:total carbon biomass;G:Chaetoceros concolor;H:Chaetoceros constricta;I:Chaetoceros curvisetus;J:Chaetoceros oblate;K:Coscinodiscus gracilis;L:Cladophora coronaria;M:Chaetoceros pseudospiralis;N:Cylindrotheca serrata;O:Noctiluca scintillans;DIN:Dissolved inorganic nitrogen;DIP:Dissolved inorganic phosphorus;DO:Dissolved oxygen
表 1 流清河湾各季节的水环境参数
Tab. 1 Water environment parameters of Liuqing River Bay in each season
环境因子
Environmental Factors范围和平均值
Range and Mean春季
Spring夏季
Sunmmer秋季
Autumn冬季
Winter温度
Temperature/(℃)范围 Range 12.90−13.80 23.50−24.60 22.80−22.90 5.60−5.80 平均值±标准差
Mean±SD13.37±0.36b 24.07±0.39d 22.87±0.05c 5.71±0.07a 盐度
Salinity范围 Range 31.13−31.19 31.08−31.14 31.67−31.68 31.00−31.12 平均值±标准差
Mean±SD31.17±0.02b 31.11±0.02a 31.677±0.005c 31.09±0.04a 溶解氧
DO/(mg/L)范围 Range 7.62−7.98 8.17−8.53 7.27−7.78 8.00−8.20 平均值±标准差
Mean±SD7.84±0.14b 8.34±0.13d 7.40±0.18a 8.14±0.06c pH 范围 Range 8.20−8.22 8.14−8.16 8.05−8.06 8.19−8.21 平均值±标准差
Mean±SD8.21±0.01d 8.15±0.01b 8.05±0.01a 8.20±0.01c Chl-a
Chlorophyll a/(µg/L)范围 Range 1.40−1.57 1.61−3.64 0.55−1.23 1.84−2.09 平均值±标准差
Mean±SD1.47±0.07b 2.06±0.71c 0.80±0.30a 1.92±0.09c 溶解无机氮
Dissolved inorganic nitrogen/(µg/L)范围 Range 36.29−90.29 79.24−131.63 194.73−222.57 171.84−183.22 平均值±标准差
Mean±SD65.58±26.27a 105.23±20.39b 207.93±10.04d 176.42±4.65c 磷酸盐
Phosphate/(µg/L)范围 Range 2.19−4.92 7.66−14.50 12.17−18.94 11.40−15.57 平均值±标准差
Mean±SD3.36±0.94a 11.17±2.35b 15.85±2.92c 13.19±1.51b 氮磷比
N/P ratio范围 Range 10.22−38.73 6.31−11.19 10.77−18.29 11.11−15.96 平均值±标准差
Mean±SD20.56±9.80b 9.60±1.69a 13.58±3.00a 13.53±1.66a 注:同行中标有不同字母者表示有显著性差异(P<0.05),标有相同字母者表示无显著性差异(P>0.05) Note:Peers with different letters indicate significant differences (P<0.05), marked with the same letter indicates no significant difference (P>0.05) 表 2 2023年流清河湾浮游植物群落组成
Tab. 2 Phytoplankton community composition in Liuqing River Bay in 2023
季节
Seasons春季
Spring夏季
Summer秋季
Autumn冬季
Winter因素
Factors物种数
Species number占比
Proportion物种数
Species number占比
Proportion物种数
Species number占比
Proportion物种数
Species number占比
Proportion硅藻门
Bacillariophyta26 78.8% 48 84.2% 40 87.0% 32 80.0% 甲藻门
Pyrrophyta6 18.2% 8 14.0% 6 13.0% 7 17.5% 金藻门
Chrysophyta1 3.0% 1 1.8% 0 0 1 2.5% 物种总数
Total species33 57 46 40 表 3 2023年流清河湾浮游植物群落中优势种的丰度、出现频率和优势度指数
Tab. 3 Abundance, frequency and dominance index of dominant species in phytoplankton community in Liuqing River Bay in 2023
时间
Time优势种
Dominant species丰度(×106)/(cells/L)
Abundance出现频率/%
Frequency优势度指数
Dominence index春季
Spring奇异棍形藻a Bacillaria paradoxa 0.125 100 0.42 蛇目圆筛藻a Coscinodiscus argus 0.011 100 0.03 中心圆筛藻a Coscinodiscus centralis 0.016 100 0.05 琼氏圆筛藻a Coscinodiscus jonesianus 0.012 100 0.03 圆筛藻a Coscinodiscus spp. 0.009 85.7 0.02 翼根管藻印度变型a Rhizosolenia alata f. indica 0.012 100 0.03 弯顶角藻b Ceratium longipes 0.040 100 0.12 大角角藻b Ceratium macroceros 0.016 85.7 0.05 三角角藻b Ceratium tripos 0.013 85.7 0.04 夏季
Summer奇异棍形藻a Bacillaria paradoxa 0.070 100 0.02 窄隙角毛藻a Chaetoceros affinis var. affinis 0.374 100 0.11 扁面角毛藻a Chaetoceros comperssus 0.141 100 0.06 并基角毛藻a Chaetoceros decipiens f. decipiens 1.159 100 0.34 罗氏角毛藻a Chaetoceros lauderi 0.098 100 0.03 旋链角毛藻a Chaetoceros curvisetus 0.158 100 0.06 星脐圆筛藻a Coscinodiscus asteromphalus var. asteromphalus 0.092 100 0.03 夏季
Summer细弱圆筛藻a Coscinodiscus subtilis var. subtilis 0.106 100 0.03 布氏双尾藻a Ditylum brightwellii 0.076 100 0.02 具槽直链藻a Melosira sulcata var. sulcata 0.106 85.7 0.03 大角角藻b Ceratium macroceros 0.139 100 0.05 三角角藻b Ceratium tripos 0.109 100 0.03 秋季
Autumn奇异棍形藻a Bacillaria paradoxa 0.422 100 0.13 角毛藻属a Chaetoceros spp. 0.082 100 0.02 旋链角毛藻a Chaetoceros curvisetus 0.172 85.7 0.04 并基角毛藻a Chaetoceros decipiens f. decipiens 0.320 100 0.10 冕孢角毛藻a Chaetoceros diadema 0.238 100 0.09 拟旋链角毛藻a Chaetoceros pseudocurvisetus 0.191 100 0.06 圆柱角毛藻a Chaetoceros teres 0.156 71.4 0.04 星脐圆筛藻a Coscinodiscus asteromphalus var. asteromphalus 0.071 100 0.02 格氏圆筛藻a Coscinodiscus granii 0.769 100 0.23 塔形冠盖藻a Stephanopyxis turris var. turris 0.104 85.7 0.03 纺锤角藻b Ceratium fusus 0.075 100 0.02 冬季
Winter格氏圆筛藻a Coscinodiscus granii 0.004 100 0.11 蛇目圆筛藻a Coscinodiscus argus 0.001 100 0.02 奇异棍形藻a Bacillaria paradoxa 0.009 100 0.28 大角角藻b Ceratium macroceros 0.001 100 0.03 夜光藻b Noctiluca scintillans 0.014 100 0.42 注:物种名称右上角标注a代表硅藻,b代表甲藻 Note: In the upper right corner of the species name, a represents Bacillariophyta and b represents Dinophyta 表 4 流清河湾浮游植物群落的多样性指数(H')和均匀度指数(J)的季节变化
Tab. 4 Seasonal variation of diversity index(H')and evenness index(J)of phytoplankton community in Liuqing River Bay
时间
Time多样性指数
Shannon-Wiener diversity idex H'均匀度指数
Pielou’s evenness index J最大值
Maximum最小值
Minimum平均值±标准差
Mean±SD最大值
Maximum最小值
Minimum平均值±标准差
Mean±SD春季
Spring3.68 2.71 3.15 0.84 0.62 0.74 夏季
Summer3.99 3.36 3.70 0.77 0.66 0.71 秋季
Autumn3.94 3.35 3.66 0.80 0.75 0.78 冬季
Winter3.08 2.09 2.40 0.69 0.48 0.55 -
[1] Zhao Pengzhen, Ouyang Longling, Shen Anglu, et al. The cell cycle of phytoplankton: a review[J]. Journal of the World Aquaculture Society, 2022, 53(4): 799−815. doi: 10.1111/jwas.12916 [2] 朱超, 孙逊, 杨晓冉, 等. 巢湖浮游植物群落季节动态变化特征及其影响因素[J]. 中国环境监测, 2024, 40(4): 129−142.Zhu Chao, Sun Xun, Yang Xiaoran, et al. Study on the seasonal succession of phytoplankton community and its driving factors in Chaohu Lake[J]. Environmental Monitoring in China, 2024, 40(4): 129−142. [3] 肖玉娜, 程靖华, 莫晓聪, 等. 丹江口水库浮游植物群落时空变化及其与环境因子的关系[J]. 湖泊科学, 2023, 35(3): 821−832. doi: 10.18307/2023.0306Xiao Yuna, Cheng Jinghua, Mo Xiaocong, et al. Spatio-temporal variation of phytoplankton community and its relationship with environ-mental factors in Danjiangkou Reservoir[J]. Journal of Lake Sciences, 2023, 35(3): 821−832. doi: 10.18307/2023.0306 [4] 杨萌卓, 夏继红, 蔡旺炜, 等. 饮水型水库浮游植物功能群分布特征及环境驱动因子[J]. 水生态学杂志, 2022, 43(2): 37−44.Yang Mengzhuo, Xia Jihong, Cai Wangwei, et al. Distribution of phytoplankton functional groups in a drinking water reservoir and analysis of environmental driving factors[J]. Journal of Hydroecology, 2022, 43(2): 37−44. [5] 孙雪梅, 夏斌, 过锋, 等. 青岛崂山近岸海域浮游植物群落结构及其与环境因子的关系[J]. 渔业科学进展, 2013, 34(3): 46−53. doi: 10.3969/j.issn.1000-7075.2013.03.006Sun Xuemei, Xia Bin, Guo Feng, et al. Structure characteristics of phytoplankton community and the relationship with environmental factors in offshore area of Laoshan, Qingdao[J]. Progress in Fishery Sciences, 2013, 34(3): 46−53. doi: 10.3969/j.issn.1000-7075.2013.03.006 [6] 齐占会, 王珺, 方建光, 等. 流清河湾扇贝养殖区夏季附着生物特征研究[J]. 渔业科学进展, 2011, 32(4): 86−92. doi: 10.3969/j.issn.1000-7075.2011.04.014Qi Zhanhui, Wang Jun, Fang Jianguang, et al. The seasonal succession of fouling organisms in Liuqing River estuary[J]. Progress in Fishery Sciences, 2011, 32(4): 86−92. doi: 10.3969/j.issn.1000-7075.2011.04.014 [7] Elliott M, McLusky D S. The need for definitions in understanding estuaries[J]. Estuarine, Coastal and Shelf Science, 2002, 55(6): 815−827. doi: 10.1006/ecss.2002.1031 [8] McLusky D S, Elliott M. The Estuarine Ecosystem: Ecology, Threats and Management[M]. Oxford: Oxford University Press, 2004. [9] Cheng J S, Qiu S R, Li P J, et al. Ecological Environment and Biological Communities in the Nearshore Waters of the Yellow and Bohai Sea[M]. China Ocean University Press, 2004: 209−244. (查阅网上资料, 未找到本条文献信息且不确定本条文献类型和格式, 请确认) [10] Wei Yuqiu, Ding Dongsheng, Gu Ting, et al. Different responses of phytoplankton and zooplankton communities to current changing coastal environments[J]. Environmental Research, 2022, 215: 114426. doi: 10.1016/j.envres.2022.114426 [11] 宁璇璇, 纪灵, 王刚, 等. 2009年莱州湾近岸海域浮游植物群落的结构特征[J]. 海洋湖沼通报, 2011(3): 97−104. doi: 10.3969/j.issn.1003-6482.2011.03.015Ning Xuanxuan, Ji Ling, Wang Gang, et al. Phytoplankton community in the nearshore waters of Laizhou Bay in 2009[J]. Transactions of Oceanology and Limnology, 2011(3): 97−104. doi: 10.3969/j.issn.1003-6482.2011.03.015 [12] 王英哲, 胡海燕, 朱琳, 等. 富营养化对靖海湾浮游植物群落的影响[J]. 环境化学, 2024, 43(3): 1010−1024. doi: 10.7524/j.issn.0254-6108.2023061903Wang Yingzhe, Hu Haiyan, Zhu Lin, et al. Effects of eutrophication on phytoplankton community in Jinghai Bay[J]. Environmental Chemistry, 2024, 43(3): 1010−1024. doi: 10.7524/j.issn.0254-6108.2023061903 [13] Crouch S R, Malmstadt H V. Mechanistic investigation of molybdenum blue method for determination of phosphate[J]. Analytical Chemistry, 1967, 39(10): 1084−1089. doi: 10.1021/ac60254a027 [14] Verdouw H, Van Echteld C J A, Dekkers E M J. Ammonia determination based on indophenol formation with sodium salicylate[J]. Water Research, 1978, 12(6): 399−402. doi: 10.1016/0043-1354(78)90107-0 [15] Wei Yuqiu, Liu Haijiao, Zhang Xiaodong, et al. Physicochemical conditions in affecting the distribution of spring phytoplankton community[J]. Chinese Journal of Oceanology and Limnology, 2017, 35(6): 1342−1361. doi: 10.1007/s00343-017-6190-6 [16] Utermöhl H. Neue Wege in der quantitativen Erfassung des Plankton. (Mit besonderer Berücksichtigung des Ultraplanktons. )[J]. SIL Proceedings, 1922, -2010,1931,5(2): 567−596. [17] Welschmeyer N A. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments[J]. Limnology and Oceanography, 1994, 39(8): 1985−1992. doi: 10.4319/lo.1994.39.8.1985 [18] 姜登岭, 赵昊, 邬喜红, 等. 嘉兴城市河网区高、低水位期浮游植物群落及其与环境因子的典范对应分析[J]. 环境化学, 2020, 39(9): 2540−2550. doi: 10.7524/j.issn.0254-6108.2020040804Jiang Dengling, Zhao Hao, Wu Xihong, et al. Model correspondence analysis of phytoplankton community and its environmental factors at high and low water levels in urban river network area of Jiaxing City[J]. Environmental Chemistry, 2020, 39(9): 2540−2550. doi: 10.7524/j.issn.0254-6108.2020040804 [19] Lin C, Ning X, Su J, et al. Environmental changes and the responses of the ecosystems of the Yellow Sea during 1976–2000[J]. Journal of Marine Systems, 2005, 55(3/4): 223−234. [20] Gao Xuelu, Zhou Fengxia, Chen C T A. Pollution status of the Bohai Sea: an overview of the environmental quality assessment related trace metals[J]. Environment International, 2014, 62: 12−30. doi: 10.1016/j.envint.2013.09.019 [21] Arndt S, Lacroix G, Gypens N, et al. Nutrient dynamics and phytoplankton development along an estuary–coastal zone continuum: a model study[J]. Journal of Marine Systems, 2011, 84(3/4): 49−66. [22] 孙大鹏. 青岛流清河湾扇贝养殖笼大型污损生物的挂板调查和栉孔扇贝(Chlamys farreri)卵黄蛋白原基因cDNA全长的克隆及表达分析[D]. 青岛: 中国海洋大学, 2009.Sun Dapeng. Investigation of large-scale fouling organisms with the method of hanging panels on scallop farming cages in Liuqing River Bay, Qingdao and full length cDNA cloning and expression analysis of vitellogenin in Chlamys farreri[D]. Qingdao: Ocean University of China, 2009. [23] Ramond P, Siano R, Schmitt S, et al. Phytoplankton taxonomic and functional diversity patterns across a coastal tidal front[J]. Scientific Reports, 2021, 11(1): 2682. doi: 10.1038/s41598-021-82071-0 [24] 张地继, 田楚铭, 高玉磊, 等. 乌东德水库浮游植物群落时空动态特征及其环境影响因素[J/OL]. 水生态学杂志, 1−124−12−01]. https://doi.org/10.15928/j.1674-3075.202306260172. Zhang Diji, Tian Chuming, Gao Yulei, et al. Spatial and temporal dynamics of phytoplankton communities in the Wudongde Reservoir and their environmental influences[J/OL]. Journal of Hydroecology, 1-12 [2024−12−01]. https://doi.org/10.15928/j.1674-3075.202306260172. [25] 盛海燕, 吴洁, 韩轶才, 等. 亚热带河流型水库浮游植物群落研究——以分水江水库为例[J]. 水生态学杂志, 2012, 33(1): 24−31.Sheng Haiyan, Wu Jie, Han Yicai, et al. Phytoplankton community of subtropical riverine reservoir -a case study of Fenshuijiang Reservoir[J]. Journal of Hydroecology, 2012, 33(1): 24−31. [26] 王娜, 康涛, 胡登权, 等. 漳河水库浮游植物群落结构特征及水质评价[J]. 淡水渔业, 2024, 54(3): 29−41. doi: 10.3969/j.issn.1000-6907.2024.03.004Wang Na, Kang Tao, Hu Dengquan, et al. Structural characteristics of the phytoplankton community in the Zhanghe Reservoir and water quality evaluation[J]. Freshwater Fisheries, 2024, 54(3): 29−41. doi: 10.3969/j.issn.1000-6907.2024.03.004 [27] Reynolds C S. The Ecology of Phytoplankton[M]. Cambridge: Cambridge University Press, 2006. [28] Vallina S M, Cermeno P, Dutkiewicz S, et al. Phytoplankton functional diversity increases ecosystem productivity and stability[J]. Ecological Modelling, 2017, 361: 184−196. doi: 10.1016/j.ecolmodel.2017.06.020 [29] 曲克明, 陈碧鹃, 袁有宪, 等. 氮磷营养盐影响海水浮游硅藻种群组成的初步研究[J]. 应用生态学报, 2000, 11(3): 445−448. doi: 10.3321/j.issn:1001-9332.2000.03.029Qu Keming, Chen Bijuan, Yuan Youxian, et al. A preliminary study on influence of N and P on population constituent of planktonic diatoms in seawater[J]. Chinese Journal of Applied Ecology, 2000, 11(3): 445−448. doi: 10.3321/j.issn:1001-9332.2000.03.029 [30] Dame R F. The role of bivalve filter feeder material fluxes in estuarine ecosystems[C]//Dame R F. Bivalve Filter Feeders. Berlin: Springer, 1993. [31] Smayda T J, Reynolds C S. Strategies of marine dinoflagellate survival and some rules of assembly[J]. Journal of Sea Research, 2003, 49(2): 95−106. doi: 10.1016/S1385-1101(02)00219-8 [32] 许海. 河湖水体浮游植物群落生态特征与富营养化控制因子研究[D]. 南京: 南京农业大学, 2008.Xu Hai. Study on the phytoplankton ecology and limiting factors to eutrophication[D]. Nanjing: Nanjing Agricultural University, 2008. [33] Nalewajko C, Murphy T P. Effects of temperature, and availability of nitrogen and phosphorus on the abundance of Anabaena and Microcystis in Lake Biwa, Japan: an experimental approach[J]. Limnology, 2001, 2(1): 45−48. doi: 10.1007/s102010170015 [34] Redfield A C. The biological control of chemical factors in the environment[J]. American Scientist, 1958, 46(3): 205−221. [35] Liu Xia, Li Yun, Shen Ruijie, et al. Reducing nutrient increases diatom biomass in a subtropical eutrophic lake, China-Do the ammonium concentration and nitrate to ammonium ratio play a role?[J]. Water Research, 2022, 218: 118493. doi: 10.1016/j.watres.2022.118493 [36] Sun Jun, Liu Dongyan. Geometric models for calculating cell biovolume and surface area for phytoplankton[J]. Journal of Plankton Research, 2003, 25(11): 1331−1346. doi: 10.1093/plankt/fbg096 [37] 高会旺, 吴德星, 白洁, 等. 2000年夏季莱州湾生态环境要素的分布特征[J]. 青岛海洋大学学报, 2003, 33(2): 185−191.Gao Huiwang, Wu Dexing, Bai Jie, et al. Distributions of environmental parameters in Laizhou Bay in summer, 2000[J]. Journal of Ocean University of Qingdao, 2003, 33(2): 185−191. [38] 张继红, 王巍, 蒋增杰, 等. 獐子岛养殖海域氮、磷的分布特征[J]. 渔业科学进展, 2009, 30(6): 88−96. doi: 10.3969/j.issn.1000-7075.2009.06.012Zhang Jihong, Wang Wei, Jiang Zengjie, et al. Distribution features of nitrogen and phosphorus in Zhangzi Island maricultural area[J]. Progress in Fishery Sciences, 2009, 30(6): 88−96. doi: 10.3969/j.issn.1000-7075.2009.06.012 [39] 于潇, 卢钰博, 李希磊, 等. 莱州湾浮游植物时空变化及其与环境因子的关系[J]. 烟台大学学报(自然科学与工程版), 2020, 33(1): 63−71.Yu Xiao, Lu Yubo, Li Xilei, et al. Temporal and spatial variation of phytoplankton and its relationship with environmental factors in Laizhou Bay[J]. Journal of Yantai University (Natural Science and Engineering Edition), 2020, 33(1): 63−71. [40] Zhu Tianyi, Zhao Shibin, Xu Bochao, et al. Large scale submarine groundwater discharge dominates nutrient inputs to China’s coast[J]. Nature Communications, 2025, 16(1): 1−9. doi: 10.1038/s41467-024-52768-7 [41] 王茂双, 李瑞环, 刘素美, 等. 桑沟湾营养盐及浮游植物对水产养殖活动的响应[J]. 中国海洋大学学报, 2024, 54(11): 83−95.Wang Maoshuang, Li Ruihuan, Liu Sumei, et al. Responses of nutrients and phytoplankton to aquaculture activities in Sanggou Bay[J]. Periodical of Ocean University of China, 2024, 54(11): 83−95. [42] 周起, 陈光杰, 李蕊, 等. 水体叶绿素a和硅藻群落时空分布及影响因子的对比分析——以云贵高原异龙湖为例[J]. 湖泊科学, 2023, 35(6): 1891−1904.Zhou Qi, Chen Guangjie, Li Rui, et al. A comparative study on spatio-temporal variations and environmental drivers of lake-water chlorophyll-a and diatom communities in Lake Yilong[J]. Journal of Lake Sciences, 2023, 35(6): 1891−1904. [43] 王英哲, 胡海燕, 朱琳, 等. 富营养化对靖海湾浮游植物群落的影响[J]. 环境化学, 2024, 43(3): 1010-1024.Wang Yingzhe, Hu Haiyan, Zhu Lin, et al. Effects of eutrophication on phytoplankton community in Jinghai Bay[J]. Environmental Chemistry, 2024, 43(3): 1010−1024. (查阅网上资料, 本条文献与第12条文献重复, 请确认) [44] 冯晟霖, 邹嘉澍, 苏玉萍, 等. 平潭海域浮游植物时空分布和甲藻赤潮特征研究[J]. 福建师范大学学报(自然科学版), 2022, 38(5): 9−17.Feng Shenglin, Zou Jiashu, Su Yuping, et al. Spatiotemporal distribution of phytoplankton and dinoflagellate red tide characteristics in Pingtan Coastal Waters[J]. Journal of Fujian Normal University(Natural Science Edition), 2022, 38(5): 9−17. [45] Wei Yuqiu, Liu Haijiao, Zhang Xiaodong, et al. Physicochemical conditions in affecting the distribution of spring phytoplankton community[J]. Chinese Journal of Oceanology and Limnology, 2017, 35(6): 1342−1361. (查阅网上资料, 本条文献与第15条文献重复, 请确认) [46] Jiang Zhibing, Chen Jianfang, Zhou Feng, et al. Controlling factors of summer phytoplankton community in the Changjiang (Yangtze River) Estuary and adjacent East China Sea shelf[J]. Continental Shelf Research, 2015, 101: 71−84. doi: 10.1016/j.csr.2015.04.009 [47] 马腾龙, 万亿, 吴萍娟, 等. 环境因素对浮游植物生长及群落结构的影响[J]. 环境保护前沿, 2024, 14(3): 459−466. doi: 10.12677/aep.2024.143063Ma Tenglong, Wan Yi, Wu Pingjuan, et al. Effects of environmental factors on phytoplankton growth and community structure[J]. Advances in Environmental Protection, 2024, 14(3): 459−466. doi: 10.12677/aep.2024.143063 [48] Zhao Guixia, Gao Xueping, Zhang Chen, et al. The effects of turbulence on phytoplankton and implications for energy transfer with an integrated water quality-ecosystem model in a shallow lake[J]. Journal of Environmental Management, 2020, 256: 109954. doi: 10.1016/j.jenvman.2019.109954 [49] Hamm C E, Merkel R, Springer O, et al. Architecture and material properties of diatom shells provide effective mechanical protection[J]. Nature, 2003, 421(6925): 841−843. doi: 10.1038/nature01416 [50] Thomas W H, Gibson C H. Quantified small-scale turbulence inhibits a red tide dinoflagellate, Gonyaulax polyedra stein[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1990, 37(10): 1583−1593. doi: 10.1016/0198-0149(90)90063-2 [51] Cloern J E, Jassby A D. Complex seasonal patterns of primary producers at the land-sea interface[J]. Ecology Letters, 2008, 11(12): 1294−1303. doi: 10.1111/j.1461-0248.2008.01244.x [52] Behrenfeld M J, Boss E S. Resurrecting the ecological underpinnings of ocean plankton blooms[J]. Annual Review of Marine Science, 2014, 6: 167−194. doi: 10.1146/annurev-marine-052913-021325 [53] Litchman E, Klausmeier C A. Trait-based community ecology of phytoplankton[J]. Annual Review of Ecology, Evolution, and Systematics, 2008, 39: 615−639. doi: 10.1146/annurev.ecolsys.39.110707.173549 [54] Newell R I E. Ecosystem influences of natural and cultivated populations of suspension-feeding bivalve molluscs: a review[J]. Journal of Shellfish Research, 2004, 23(1): 51−61. [55] McKindsey C W, Landry T, O’Beirn F X, et al. Bivalve aquaculture and exotic species: a review of ecological considerations and management issues[J]. Journal of Shellfish Research, 2007, 26(2): 281−294. doi: 10.2983/0730-8000(2007)26[281:BAAESA]2.0.CO;2 [56] Li Junlong, Zheng Binghui, Liu Lusan, et al. Phytoplankton community structure in the Yangtze River estuary and its relation to environmental factors[J]. Research of Environmental Sciences, 2013, 26(4): 403−409. [57] Guo Jinqiang, Yuan Huamao, Song Jinming, et al. Hypoxia, acidification and nutrient accumulation in the Yellow Sea Cold Water of the South Yellow Sea[J]. Science of the Total Environment, 2020, 745: 141050. doi: 10.1016/j.scitotenv.2020.141050 -