留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温胁迫下坛紫菜的数字基因表达谱研究

赖晓娟 严小军 杨锐 骆其君 陈海敏

赖晓娟, 严小军, 杨锐, 骆其君, 陈海敏. 高温胁迫下坛紫菜的数字基因表达谱研究[J]. 海洋学报, 2014, 36(6): 104-111.
引用本文: 赖晓娟, 严小军, 杨锐, 骆其君, 陈海敏. 高温胁迫下坛紫菜的数字基因表达谱研究[J]. 海洋学报, 2014, 36(6): 104-111.
Lai Xiaojuan, Yan Xiaojun, Yang Rui, Luo Qijun, Chen Haimin. Digital gene expression profiling analysis of Pyropia haitanensis under high temperature stress[J]. Haiyang Xuebao, 2014, 36(6): 104-111.
Citation: Lai Xiaojuan, Yan Xiaojun, Yang Rui, Luo Qijun, Chen Haimin. Digital gene expression profiling analysis of Pyropia haitanensis under high temperature stress[J]. Haiyang Xuebao, 2014, 36(6): 104-111.

高温胁迫下坛紫菜的数字基因表达谱研究

基金项目: 浙江省重大科技专项(2012C12907-6);国家公益性行业(海洋)科研专项经费项目(201105023);浙江省创新团队项目(2012R10025-07);宁波市创新团队项目(2011B81007);宁波市科技攻关项目(201201C1011016);宁波大学研究生科研创新基金项目。

Digital gene expression profiling analysis of Pyropia haitanensis under high temperature stress

  • 摘要: 坛紫菜是潮间带重要的经济藻种,对高温、渗透压等逆境具有独特的调控机制。本文采用基于高通量测序的数字基因表达谱(DGE)技术研究了坛紫菜在高温胁迫下的基因表达差异,并分析其相应的响应方式;利用实时定量PCR技术对DGE部分数据进行验证;检测了其中较有代表性的应答基因hsp70的差异表达。结果显示,高温胁迫下坛紫菜中有256个unigene上调表达,以HSP、核糖体蛋白L12、延伸因子EF-Tu及部分光合作用相关基因为代表,3 820个unigene下调表达,主要为核酸、蛋白以及糖类等合成代谢相关基因。Gene Ontology分析表明,差异表达基因主要定位于质体等有膜细胞器,参与繁殖和发育过程,行使催化和连接酶活性的功能。Pathway分析显示,这些基因分布于107条pathway中。其中,下调表达基因最显著富集于mRNA监督和RNA转运途径,而上调表达基因部分富集于内质网的蛋白加工、RNA降解及光合作用途径。验证表明此次DGE结果具有较高准确性,hsp70基因对高温响应积极。综上所述,DGE结果反应出,在高温胁迫时,坛紫菜出现基础代谢减慢、合成速度下降、能量合成受阻、碳同化降低等现象,但光合作用前期未受影响,同时补救途径启动。
  • 张学成,秦松,马家海,等. 海藻遗传学[M]. 北京:中国农业出版社,2005.
    杨锐,张晓龙,徐丽宁,等. 坛紫菜耐高温胁迫机理之初步研究//中国海洋湖沼学会藻类学分会第七届会员大会暨第十四次学术讨论会论文摘要集,2007.
    Chen S,Jiang J,Li HY,et al. The salt-responsive transcriptome of Populus simonii × Populus nigra via DGE[J]. Gene,2012,504(2):203-212.
    Choi S,Hwang M S,Im S,et al. Transcriptome sequencing and comparative analysis of the gametophyte thalli of Pyropia tenera under normal and high temperature conditions[J]. J Appl Phycol,2013,25(4):1237-1264.
    杨惠. 条斑紫菜功能基因组及重复序列特征研究. 青岛:中国海洋大学,2011.
    Mortazavi A,Williams B A,McCue K,et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq[J]. Nat Methods,2008,5(7): 621-628.
    Li R,Yu C,Li Y,et al. SOAP2: an improved ultrafast tool for short read alignment[J]. Bioinformatics,2009,25 (15): 1966-1967.
    Audic S,Claverie J M. The significance of digital gene expression profiles[J]. Genome Res,1997,7(10): 986-995.
    Kanehisa M,Araki M,Goto S,et al. KEGG for linking genomes to life and the environment[J]. Nucleic Acids Res, 2008,36: 480-484.
    朱竹君,骆其君,严小军,等. 琼胶寡糖聚合度对坛紫菜抗性诱导的影响[J].海洋学报,2012,34(6):205-209.
    Bray E A,Bailey-Serres J,Weretilnyk E. Responses to abiotic stresses//Buchanan B,Gruissem W,Jones R. Biochemistry and molecular biology of plants. American Society of Plant Biologists,Rockville,2000: 1158-1203.
    Wang W,Vinocur B,Shoseyov O,et al. Role of plant heat-shock proteins and molecular chaperons in the abiotic stress response[J]. Trends Plant Sci,2004,9(5): 244-252.
    Allakhverdiev S I,Kreslavski V D,Klimov V V,et al. Heat stress: an overview of molecular responses in photosynthesis[J]. Photosynth Res,2008,98(1-3): 541-550.
    McKersie B D,Leshem Y Y. Stress and stress coping in cultivated plants[M]. Dordrecht: Kluwer Academic Publishers,1994:181-193.
    Daugaard M,Rohde M. The heat shock protein 70 family: Highly homologous proteins with overlapping and distinct functions[J]. FEBS Lett,2007,581(19): 3702-3710.
    Kim E,Park H S,Jung Y,et al. Identification of the high-temperature response genes from Porphyra seriata(rhodophyta) expression sequence tags and enhancement of heat tolerance of Chlamydomonas(chlorophyta) by expression of the porphyra HTR2 gene[J]. J Phycol,2011,47(4): 821-828.
    Kim Y K,Jang K. Continuous heat shock enhances translational initiation directed by internal ribosomal entry site[J]. Biochem Biophys Res Comun,2002,297(2): 224-231.
    Warner J R,McIntosh K B. How common are extraribosomal functions of ribosomal proteins[J]. Mol Cell,2009,34(1): 3-11.
    Fu J,MomciloviéI,Clemente T E,et al. Heterologous expression of a plastid EF-Tu reduces protein thermal aggregation and enhances CO2 fixation in wheat (Triticum aestivum) following heat stress[J]. Plant Mol Biol,2008,68(3):277-288.
    Urano K,Kurihara Y,Seki M,et al. "Omics" analyses of regulatory networks in plant abiotic stress responses[J]. Curr Opin Plant Biol,2010,13(2): 132-138.
    Mittler R,Flinka A,Goloubinoff P. How do plant feel the heat?[J]. Trends Biochem Sci,2012,37(3): 118-125.
    Qin D,Wu H,Peng H,et al. Heat stress-responsive transcriptome analysis in heat susceptible and tolerant wheat (Triticum aestivum L.) by using Wheat Genome Array[J]. BMC Genomic,2008,9: 432.
  • 加载中
计量
  • 文章访问数:  2360
  • HTML全文浏览量:  7
  • PDF下载量:  1661
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-05

目录

    /

    返回文章
    返回