留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

白令海BR断面海-气CO2通量及其参数特征

高众勇 孙恒 陈立奇

高众勇, 孙恒, 陈立奇. 白令海BR断面海-气CO2通量及其参数特征[J]. 海洋学报, 2011, 33(6): 85-92.
引用本文: 高众勇, 孙恒, 陈立奇. 白令海BR断面海-气CO2通量及其参数特征[J]. 海洋学报, 2011, 33(6): 85-92.
GAO Zhong-yong, SUN Heng, CHEN Li-qi. Air-sea CO2 flux and its related parameters over BR Section of the Bering Sea[J]. Haiyang Xuebao, 2011, 33(6): 85-92.
Citation: GAO Zhong-yong, SUN Heng, CHEN Li-qi. Air-sea CO2 flux and its related parameters over BR Section of the Bering Sea[J]. Haiyang Xuebao, 2011, 33(6): 85-92.

白令海BR断面海-气CO2通量及其参数特征

基金项目: 国家自然科学基金项目"白令海入流水对北冰洋生态系统及碳汇的影响研究"(40976116);中央级公益性科研院所基本科研业务费专项资金资助项目"北极碳汇十年变化及其对北极海冰快速变化的响应"(海三科2010011);"夏季白令海二氧化碳体系关键问题研究"(海三科2010001)。

Air-sea CO2 flux and its related parameters over BR Section of the Bering Sea

  • 摘要: 通过对2008年夏季白令海大气和海水pCO2连续观测资料,结合BR断面上站位水体垂直采样测量,对白令海不同海区pCO2的分布特征及其与理化参数的关系进行了初步研究,结果表明, 将白令海划分为4个具有不同CO2吸收能力的海区,其中陆坡流区碳通量高达-18.72 mmol/(m2·d),是海盆北区的近2倍,比海盆南区高一个量级;在海盆北区和陆坡流区pCO2随温度升高而增加, 两者之间呈正相关关系,而在海盆南区和陆架区两者的关系不明显, 表明这两个海区的温度可能不是pCO2变化的主要调控因子;在海盆北区与陆架区pCO2与盐度呈显著的相关,这很可能受到水团混合的影响,而在海盆南区与陆坡流区两者的变化幅度比较小,关系也不显著。在海盆南区有充分混合的高温、高盐、高溶解总无机碳(DIC)和高总碱度(TA)的水体,这是导致该海区CO2吸收能力最弱的主要原因。在陆坡流区与此相反,呈现出低温、低盐、低TA和低DIC的水体特征,明显不同于白令海盆或白令海陆架区,这可能是形成表层海水pCO2低值的主要原因。
  • TSUNOGAI S, KUSAKABE M, IIZUMI H, et al. Hydrographic features of the deep water of the Bering Sea-the sea of silica[J].Deep-Sea Research: Part A, 1979, 26(6): 641-659.
    SANCETTA C. Oceanographic and ecological significance of diatoms in surface sediments of the Bering and Okhotsk Seas[J].Deep-Sea Research, 1981, 28A: 789-817.
    SAMBROTTO R N, GOERING J J, McROY C P. Large yearly production of phytoplankton in the western Bering Strait[J].Science, 1984, 225(4667): 1147.
    KWAGUCHI K. PSECS: Pacific subarctic ecosystem study (preface) [J].Journal of Oceanography, 2001, 57(3): 251-252.
    ARANAMI K, WATANABE S, TSUNOGAI S, et al. Biogeochemical variation in dimethylsulfide, phytoplankton pigments and heterotrophic bacterial production in the subarctic north Pacific during summer[J].Journal of Oceanography, 2001, 57(3): 315-322.
    SPRINGER A M, McROY C P, FLINT M V. The Bering Sea green belt: shelf edge processes and ecosystem production[J].Fisheries Oceanography, 1996, 5(3-4): 205-223.
    MARKINA N P, KHEN G. The basic functional elements in pelagic communities of the Bering Sea[J].Izvestija Tikho Okeanskogo Nauchno-Issledova Telskogo Insitituta Rybnogo Khozyaistva Okeanografii(TINRO) in Russian, 1990, 111: 79-93.
    COACHMAN L K, AAGAARD K, TRIPP R B. Bering Strait: the Regional Physical Oceanography[M]. Washington: Univ of Washington Pr, 1975.
    MURPHY P P, NOJIRI Y, HARRISON D E, et al. Scales of spatial variability for surface ocean pCO2 in the Gulf of Alaska and Bering Sea: toward a sampling strategy[J].Geophysical Research Letters, 2001, 28(6): 1047-1050.
    NEDASHKOVSKII A P, SAPOZHNIKOV V V. Estimation of the CO2 fluxes through the ocean-atmosphere boundary by hydrochemical parameters in the western part of the Bering Sea[J].Oceanology, 2001, 41(3): 351-359.
    CODISPOTI L A, FRIEDERICH G E, IVERSON R L, et al. Temporal changes in the inorganic carbon system of the southeastern Bering Sea during spring 1980[J].Nature, 1982, 296: 242-245.
    CODISPOTI L A, FRIEDERICH G E, HOOD D W. Variability in the inorganic carbon system over the southeastern Bering Sea shelf during spring 1980 and spring-summer 1981[J].Continental Shelf Research, 1986, 5(1-2): 133-160.
    CHEN C T A. Carbonate chemistry of the wintertime Bering Sea marginal ice zone[J].Continental Shelf Research, 1993, 13(1): 67-87.
    TAKAHASHI T, SUTHERLAND S C, SWEENEY C, et al. Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects[J].Deep-Sea Research: Part Ⅱ, 2002, 49(9-10): 1601-1622.
    TAKAHASHI T, SUTHERLAND S C, WANNINKHOF R, et al. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans[J].Deep-Sea Research: Part Ⅱ. Topical Studies in Oceanography, 2009, 56(8-10): 554-577.
    CHEN C T A, ANDREEV A, KIM K R, et al. Roles of continental shelves and marginal seas in the biogeochemical cycles of the north Pacific Ocean[J].Journal of Oceanography, 2004, 60(1): 17-44.
    BATES N R, MATHIS J T, JEFFRIES M A. Air-sea CO2 fluxes on the Bering Sea shelf[J].Biogeosciences Discussions, 2010, 7: 7271-7314.
    陈立奇.北极海洋环境与海气相互作用研究[M]. 北京: 海洋出版社, 2003.
    张占海.中国第二次北极科学考察报告 . 北京: 海洋出版社, 2004.
    张海生.中国第三次北极科学考察报告 . 北京: 海洋出版社, 2009.
    陈立奇, 高众勇, 王伟强, 等. 白令海盆pCO2分布特征及其对北极碳汇的影响[J].中国科学:D辑, 2003(08): 781-790.
    CHEN L Q, GAO Z Y, WANG W Q, et al. Characteristics of pCO2 in surface water of the Bering Abyssal Plain and their effects on carbon cycle in the western Arctic Ocean[J].Science in China: Series D. Earth Sciences, 2004, 47(11): 1035-1044.
    CHEN L, GAO Z. Spatial variability in the partial pressures of CO2 in the northern Bering and Chukchi Seas[J].Deep-Sea Research: Part Ⅱ, 2007, 54: 2619-2629.
    CAI W J, DAI M H, WANG Y C, et al. The biogeochemistry of inorganic carbon and nutrients in the Pearl River estuary and the adjacent northern South China Sea[J].Continental Shelf Research, 2004, 24(12): 1301-1319.
    DICKSON A G, SABINE C L, CHRISTIAN J R. Guide to Best Practices for Ocean CO2 Measurements[M]. Sydney, British Columbia: North Pacific Marine Science Organization, 2007.
    陈立奇,高众勇. 海洋二氧化碳测定最优方法指南[M]. 北京: 海洋出版社, 2010.
    WEISS R F. Carbon dioxide in water and seawater: the solubility of a non-ideal gas[J].Mar Chem, 1974, 2(3): 203-215.
    WANNINKHOF R. Relationship between gas exchange and wind speed over the ocean[J].J Geophys Res, 1992, 97(C5): 7373-7381.
  • 加载中
计量
  • 文章访问数:  1706
  • HTML全文浏览量:  9
  • PDF下载量:  1005
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-10-08
  • 修回日期:  2011-07-20

目录

    /

    返回文章
    返回