留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

南极普里兹湾海冰季节性变化的高分辨率数值模拟

李群 吴辉碇 张璐

李群, 吴辉碇, 张璐. 南极普里兹湾海冰季节性变化的高分辨率数值模拟[J]. 海洋学报, 2011, 33(5): 32-38.
引用本文: 李群, 吴辉碇, 张璐. 南极普里兹湾海冰季节性变化的高分辨率数值模拟[J]. 海洋学报, 2011, 33(5): 32-38.
LI Qun, WU Hui-ding, ZHANG Lu. Fine-scale simulation of the seasonal variations of sea ice cover in the Prydz bay, Antarctic[J]. Haiyang Xuebao, 2011, 33(5): 32-38.
Citation: LI Qun, WU Hui-ding, ZHANG Lu. Fine-scale simulation of the seasonal variations of sea ice cover in the Prydz bay, Antarctic[J]. Haiyang Xuebao, 2011, 33(5): 32-38.

南极普里兹湾海冰季节性变化的高分辨率数值模拟

基金项目: 国家自然科学青年基金项目(40906099);中国极地战略研究基金资助(20080223);中国极地研究中心极地科学青年创新基金。

Fine-scale simulation of the seasonal variations of sea ice cover in the Prydz bay, Antarctic

  • 摘要: 普里兹湾海冰以一年冰为主,海冰覆盖存在较大的季节性变化。海冰的分布及其季节性变化主要受当地大气环流及海流的影响。基于一个海洋-海冰耦和模式,模拟研究了该海区海冰的季节性变化特征。海洋模式基于MIT环流模式(MITgcm),海冰动力学模式参考Hibler类型的VP模型,热力学过程取自Winton三层模型。模式区域覆盖整个普里兹湾(75°~55°S ,50°~100°E),水平分辨率为(1/6)°×(1/12)°,垂向为50层。大气强迫场选用每6 h一次的NCEP再分析资料。模拟的海冰范围季节性变化与遥感资料拟合较好。每年的3~8月份,普里兹湾海冰快速生长,9~10月份达到最大值,随后海冰开始融化,2月份达到最小值。从9月份开始,受大陆沿岸局地风场的影响,在模拟区域范围内,形成了3个典型的沿岸冰间湖。和观测资料对比,模式较好地捕捉到了3个典型冰间湖的时间及空间分布。沿岸地形及海流对海冰厚度的分布具有重要影响,在西向沿岸流及西冰架地形的影响,在地形的上游形成海冰堆积,厚度最大超过3 m。同时,在下游方向,沿66°S形成一个厚冰带。
  • IUDICONE D S, Speich G Madec, Blanke B. The global conveyor belt from a Southern Ocean perspective[J].Journal of Physical Oceanography, 2008,38(7):1401-1425.
    JACOBS S S. Bottom water production and its links with the thermohaline Circulation[J]. Antarctic Science, 2004:16(4):427-437.
    JOHNSON G C. Quantifying Antarctic bottom Water and North Atlantic deep water volumes[J]. J Geophys Res, 2008,113, C05027, doi: 10.1029/2007JC004477.
    董兆乾,等. 南极普里兹湾海域夏季的水团和环流 //董兆乾.南极科学考察论文集(第二集) . 北京:海洋出版社, 1984: 1 -24.
    苏玉芬. 普里兹湾及其邻近海域的环流结构和海水运动[M]// 周秀骥, 陆龙骅.南极与全球气候环境相互作用和影响的研究. 北京:气象出版社, 1996: 169-175.
    LE K, SHI J, YU K,et al.Some thoughts on the spatiotemporal variations of water masses and circulations in the region of Prydz Bay, Antarctica[J]. Studia Marina Sinica, 1998:40: 43-54.
    SMITH N R, DONG Z , KERRY K R, et al. Water masses and circulation in the region of Prydz Bay, Antarctica[J]. Deep-Sea Res: Part A, 1984, 31(9): 1121-1147.
    PARK Y H, GAMBRONI L.Large-scale circulation and its variability in the south Indian Ocean from TOPEX/POSEIDON altimetry[J]. J Geophys Res, 1995:100(C12): 24911-24929.
    ALLISON I, AKERMAN G. Sea ice and ocean energy balance studies at Mawson, Antarctic //Sea ice process and models. Coedition University of Washington Press, Seattle/IAHS Publ,1980,124: 347-359.
    MITgcm Group. MITgcm Release lManual . Cambridge, MA 02139, USA, http://mitgcm.org/sealion/online_documents/manual.html. 2002.
    MARSHALL J, ADCROFT A, CAMPIN J-M, et al. White. Atmosphere-ocean modeling exploiting fluid isomorphisms[J]. Mon Wea Rev, 2004,132(12): 2882-2994.
    HIBLER W D III. Modeling a variable thickness sea ice cover[J]. Mon Wea Rev, 1980,108:1943-1973.
    HIBLER W D III. A dynamic thermodynamic sea ice model[J]. J Phys Oceanogr, 1979, 9: 815-846.
    WINTON M. A reformulated three-layer sea ice model[J]. J Atmos Ocean Technol, 2000, 17:525-531.
    PARKINSON C L, Washington W M. A Large-Scale Numerical Model of Sea Ice[J]. J Geophys Res, 1979,84(C1): 311-337.
    ZHANG J, ROTHROCK D A, STEELE M. Recent changes in Arctic sea ice: The interplay between ice dynamics and thermodynamics[J].J Climate, 2000,13: 3099-3114.
    MAKSYM T,JEFFRIES M O. A one-dimensional percolation model of flooding and snow ice formation on Antarctic sea ice[J]. J Geophys Res, 2000,105(C11): 26313-26331.
    MENEMENLIS D, CAMPIN J, HEIMBACH P, et al. ECCO2: High resolution global ocean and sea ice data synthesis[J].Mercator Ocean Quarterly Newsletter, 2008,31:13-21.
    SMITH W H F,SANDWELL D T. Global seafloor topography from satellite altimetry and ship depth soundings[J]. Science, 1997,277:1957-1962.
    SPREEN G, KALESCHKE L, HEYGSTER G. Sea ice remote sensing using AMSR-E 89-GHz channels[J]. J Geophys Res, 2008, 113, C02S03, doi: 10.1029/2005JC003384
    WORBY A P, GEIGER C, PAGET M J, et al. Thickness distribution of Antarctic sea ice[J]. J Geophys Res, 2008,113, C05S92, doi: 10.1029/2007JC004254.
    GUO Jing-xue, SUN Bo, Tian Gang. The application of electromagnetic-induction on the measurement of sea ice thickness in the Antarctic[J]. Applied Geophysics, 2007,4(3):214-220.
    MASSOM R A, HARRIS P T, MICHAEL K J, et al. The distribution and formative processes of latent-heat polynyas in East Antarctica[J]. Ann Glaciol, 1998, 27: 420-426.
    ARRIGO K R,van DIJKEN G L. Phytoplankton dynamics within 37 Antarctic coastal polynya systems[J]. J Geophys Res, 2003,108(C8): 3271, doi: 10.1029/2002JC001739.
    TAMURA T, OHSHIMA K I,NIHASHI S. Mapping of sea ice production for Antarctic coastal polynyas[J]. Geophys Res Lett,2008,35, L07606, doi: 10.1029/2007GL032903.
    MORALES Maqueda M A, WILLMOTT A J, BIGGS N R T. Polynya dynamics: a review of observations and modeling[J]. Review of Geophysics, 2002,42(1), doi: 10.1029/2002RG000116.
    SMITH W O, Barber D G. Polynyas: Windows to the world[J]. Elsevier Oceanography Series, 2007,74:1-458.
    SMEDSRUD L H, BUDGELL W P, JENKINS A D, et al. Fine scale sea ice modelling of the Storfjorden polynya[J]. Annals of Glaciology,2006, 44(1):73-79.
  • 加载中
计量
  • 文章访问数:  1303
  • HTML全文浏览量:  15
  • PDF下载量:  1575
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-11-24

目录

    /

    返回文章
    返回