留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

珠江口淇澳岛海岸带沉积物中硫酸盐还原 和不同形态硫的分布

尹希杰 周怀阳 杨群慧 孙治雷

尹希杰, 周怀阳, 杨群慧, 孙治雷. 珠江口淇澳岛海岸带沉积物中硫酸盐还原 和不同形态硫的分布[J]. 海洋学报, 2010, 32(3): 31-39.
引用本文: 尹希杰, 周怀阳, 杨群慧, 孙治雷. 珠江口淇澳岛海岸带沉积物中硫酸盐还原 和不同形态硫的分布[J]. 海洋学报, 2010, 32(3): 31-39.
YIN Xi-jie, ZHOU Huai-yang, YANG Quen-hui, SUN Zhi-lei. Sulfate reduction and reduced sulfur speciation in the coastal sediments of Qi’ao Island in the Zhujiang Estuary in China[J]. Haiyang Xuebao, 2010, 32(3): 31-39.
Citation: YIN Xi-jie, ZHOU Huai-yang, YANG Quen-hui, SUN Zhi-lei. Sulfate reduction and reduced sulfur speciation in the coastal sediments of Qi’ao Island in the Zhujiang Estuary in China[J]. Haiyang Xuebao, 2010, 32(3): 31-39.

珠江口淇澳岛海岸带沉积物中硫酸盐还原 和不同形态硫的分布

基金项目: 国家海洋局第三海洋研究所基本科研业务费专项资金资助项目(海三科2009013);中国大洋协会国际海底区域研究开发"十一五"项目——深海生物地球化学过程在地质体中的记录研究(DYXM-115-02-4-04);"九○八"专项成果集成项目——中国近海海洋底质调查研究(908-ZC-I-05)。

Sulfate reduction and reduced sulfur speciation in the coastal sediments of Qi’ao Island in the Zhujiang Estuary in China

  • 摘要: 对珠江口淇澳岛海岸带3个站位(QA-11,QA-9和 QA-14)的沉积物中不同形态的还原硫(酸可挥发性硫,黄铁矿和有机硫)、总有机碳(TOC)和孔隙水中SO2-4,甲烷浓度进行了测定,并且利用稳态扩散模型计算其中2个站位(QA-9和QA-14)硫酸盐还原通量 和甲烷厌氧氧化通量 。研究结果表明由于潮间带沉积物受到SO2-4供给的限制,因此位于潮间带的QA-11站位硫酸盐还原带较浅(约16 cm);在潮下带的QA-9和
  • JΦRGENSEN B B. The sulfur cycle of a coastal marine sediment Limfjorden, Denmark[J]. Limnology and Oceanography, 1977, 22: 814—832.
    CHAMBERS R M, HOLLIBAUGH J T, VINK S M. Sulfate reduction and sediment metabolism in Tomales Bay, California[J]. Biogeochemistry, 1994, 25:1—18.
    WELLSBURY P, HERBERT R A, PARKES R J. Bacterial activity and production in near-surface estuarine and freshwater sediments[J]. FEMS Microbiol Ecol, 1996,19: 203—214.
    CELINE P, PHILIPPE V C. Kinetics of microbial sulfate reduction in estuarine sediments[J]. Geochimica et Cosmochimica Acta, 2006,70: 1148—1162.
    RICKARD D T. Kinetics of FeS precipitation: Part 1. Competing reaction mechanisms[J]. Geochimica et Cosmochimica Acta, 1995, 59: 4367—4379.
    JΦRGENSEN B B. A thiosulfate shunt in the sulfur cycle of marine sediments[J]. Science, 1990, 249:152—154.
    FOSSING H, JΦRGENSEN B B. Oxidation and reduction of radiolabeled inorganic sulfur compounds in an estuarine sediment, Kysing Fjord, Denmark[J]. Geochimica et Cosmochimica Acta, 1990, 54: 2731—2742.
    DITORO D M, MAHONY J D, HANSEN D J, et al. Toxicity of cadmium in sediments: the role acid volatile sulfide[J]. Environ Toxicology and Chem, 1990, 9(12):1487—1502.
    BAGARINAO T. Sulfide as an environmental factor and toxicant: tolerance and adaptations in aquatic organisms[J]. Aquatic Toxicology, 1992, 24:21—62.
    BLAIRl N E, ALLER R C. Anaerobic methane oxidation on the Amazon shelf[J]. Geochimica et Cosmochimica acta, 1995, 59(18):3707—3715.
    BERNER R A. Burial of organic carbon and pyrite sulfur in the modern ocean: its geochemical and environmental significance[J]. American Journal of Science, 1982, 282: 451—473.
    吴丰昌,万国江,黄荣贵,等,湖泊水体中硫酸盐增高的环境效应研究[J].环境科学学报, 1998, 18(1):28—33.
    尹洪斌,范成新,丁士明,等.太湖沉积物中无机硫的化学特性[J].中国环境科学, 2008,28(2):183—187.
    宋柳霆,刘丛强,王中良,等.贵州红枫湖硫酸盐来源及循环过程的硫同位素地球化学研[J].地球化学,2008,37(6):556—564.
    HORST D S, MATTHIAS Z. Marine Geochemistry[M]. Berlin:Springer, 2006.
    CALLAHAN J, DAI M H, CHEN R F. Distribution of dissolved organic matter in the Pearl River Estuary, China[J]. Marine Chemistry, 2004,89: 211—224.
    DAI M H, GUO X H, ZHAI W D, et al. Oxygen depletion in the upper reach of the Pearl River estuary during a winter drought [J]. Marine Chemistry, 2006, 102:159—169.
    LI Q S, WU Z F, CHU B, et al. Heavy metals in coastal wetland sediments of the Pearl River Estuary, China[J]. Environmental Pollution, 2007, 149:158—164.
    JIA Guo-dong, PENG Ping-an. Temporal and spatial variations in signatures of sedimented organic matter in Lingding Bay (Pearl estuary), southern China[J]. Marine Chemistry, 2003, 82:47—54.
    陈耀泰. 珠江口现代沉积速率与沉积环境[J]. 中山大学学报:自然科学版, 1992,31(2):100—107.
    JΦRGENSEN B B, WEBER A, ZOPFI J. Sulfate reduction and anaerobic methane oxidation in Black Sea Sediments[J]. Deep-Sea Research, 2001, 48: 2097—2120.
    TUTTLE M L, GOLDHABER M B. An analytical scheme for determining forms of sulphur in oil shales and associated rocks[J]. Talanta, 1986, 33(12):953—961.
    CANFIELD D E, RAISWELL R, WESTRICH J T, et al. The use of chromium reduction in the analysis of reduced sulfur in sediments and shales[J]. Chemistry Geology, 1986, 54: 149—155.
    BERNER R A. Early Didgenesis: A Theoretical Approach[M]. Princton: Princton Univ Press, 1980: 241.
    BOUDREAU B P. Diagenetic Models and Their Impletation: Modeling Transport and Reations in Aquatic Sediments[M]. Berlin: Springer, 1997:414.
    ALAKENDRA N R, PHILIPPE V C, JOEL E K, et al. Kinetics of microbially mediated reactions:dissimilatory sulfate reduction in saltmarsh sediments (Sapelo Island, Georgia, USA)[J]. Estuarine, Coastal and Shelf Science, 2003,56:1001—1010.
    DONOVAN P, ALAKENDRAN R, DONALD C. Dissimilatory sulfate reduction in hypersaline coastal pans: activity across a salinity gradient [J]. Geochimica et Cosmochimica Acta, 2007, 71:5102—5116.
    BETH O A B, ANTJE B,MARCUS E, et al. Molecular biogeochemistry of sulfate reduction, methanogenesis and the anaerobic oxidation of methane at Gulf of Mexico cold seeps[J]. Geochimica et Cosmochimica Acta, 2005, 69:4267—4281.
    BOROWSKI W S, PAULL C K, USSLER III W. Marine pore-water sulfate profiles indicate in-situ methane flux from underlying gas hydrate [J]. Geology, 1996,24: 655—658.
    WINFREY M R, ZEIKUS J G. Effect of sulfate on carbon and electron flow during microbial methanogenesis in freshwater sediments[J]. Appl Environ Microbiol, 1977, 33(2): 275—281.
    KIENE R P, OREMLAND R S, CATENA A, et al. Metabolism of reduced methylated sulfur compounds by anaerobic sediments and a pure culture of estuarine methanogen[J]. Appl Environ Microbiol, 1986,52:1037—1045.
    WINFREY M R, WARD D M. Substrates for sulfate reduction and methane production in intertidal sediments[J]. Appl Environ Microbiol, 1983, 45:193—199.
    THOMAS J L, ARIAN P, HUUB J M. Sulfate reduction and methanogenesis in sediments of Mtoni mangrove forest, Tazania[J].Ambio-A Journal of the Human Environment, 2002,7-8:614—616.
    TUTTLE M L, GOLDHABER M B. Sedimentary sulfur geochemistriy of the Paleogeng Green River Formation, Western USA; implications for interpreting depositional and diagenetic processes in saline alkaline lakes[J]. Geochim et Cosmochim Acta ,1993,57(13):3023—3039.
    MOSSMANN J R, APLIN A C, CURTIS C D, et al. Geochemistry of inorganic and organic sulphur in organic-rich sediments form the Peru margin[J]. Geochim et Cosmochim Acta, 1991, 55(12):3581—3595.
    LIN S, MORSE J W. Sulfate reduction and iron sulfide mineral formation in Gulf of Mexico anoxic sediments[J]. American Journal of Science, 1991,291: 55—89.
    WIJISMAN J W M, MIDDELBURG J J, PETER M J. Sulfur and iron speciation in surface sediments along the northwestern margin of the Black Sea[J]. Marine Chemistry, 2001, 74:261—278.
    MACLCOLM W C, MC CONCHIED, LEWISD W, et al. Redox stratification and heavy metal partitioning in Avicnnia-dominated mangrove sediment: a geochemical model[J]. Chemical Geology, 1988, 34(2): 379—386.
    NEDWELL D D, ABRAM J W. Bacterial sulfate reduction in relation to sulfur geochemistry in two contrasting areas of salt marsh sediment[J]. Estuary Coastal Marine Science, 1978,6:341—351.
    NIEWHNER C, HENSEN C, KASTEN S, et al. Deep sulfate reduction completely mediated by anaerobic methane oxidation in sediments of the upwelling area off Namibia[J]. Geochimica et Cosmochimica Acta, 1998, 62: 455—464.
    GAGNON C, MUCCI A, PELLETIER E. Anomalous accumulation of acid-volatile sulphides (AVS) in a coastal marine sediment, Saguenay Fjord, Canada [J]. Geochim et Cosmochim Acta, 1995, 59:2663—2675.
    张汝国. 珠江口红树林硫的积累和循环研究[J]. 热带亚热带土壤科学研究, 1996,5(2):67—73.
  • 加载中
计量
  • 文章访问数:  1755
  • HTML全文浏览量:  10
  • PDF下载量:  1801
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-04-15
  • 修回日期:  2009-11-18

目录

    /

    返回文章
    返回